The center of $\mathbb {Z}[S^{n+1}]$ is the set of symmetric polynomials in $n$ commuting transposition-sums
HTML articles powered by AMS MathViewer
- by Gadi Moran
- Trans. Amer. Math. Soc. 332 (1992), 167-180
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062873-1
- PDF | Request permission
Abstract:
Let ${S_{n + 1}}$ be the symmetric group on the $n + 1$ symbols $0,1,2, \ldots ,n$. We show that the center of the group-ring $\mathbb {Z}[{S_{n + 1}}]$ coincides with the set of symmetric polynomials with integral coefficients in the $n$ elements ${s_1}, \ldots ,{s_n} \in \mathbb {Z}[{S_{n + 1}}]$, where ${s_k} = \sum \nolimits _{0 \leq i < k} {(i,k)}$ is a sum of $k$ transpositions, $k = 1, \ldots ,n$. In particular, every conjugacy-class-sum of ${S_{n + 1}}$ is a symmetric polynomial in ${s_1}, \ldots ,{s_n}$.References
- Jin Quan Chen, Group representation theory for physicists, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. With a foreword by Morton Hamermesh. MR 1005326, DOI 10.1142/0262 P. A. M. Dirac, The principles of quantum mechanics, 4th ed., Oxford Univ. Press, 1958. J. Katriel and G. Moran, Generating the center of the symmetric group-algebra by transposition class-sums of its symmetric subgroups (submitted).
- I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1979. MR 553598
- H. K. Farahat and G. Higman, The centres of symmetric group rings, Proc. Roy. Soc. London Ser. A 250 (1959), 212–221. MR 103935, DOI 10.1098/rspa.1959.0060
- A.-A. A. Jucys, Symmetric polynomials and the center of the symmetric group ring, Rep. Mathematical Phys. 5 (1974), no. 1, 107–112. MR 419576, DOI 10.1016/0034-4877(74)90019-6
- G. E. Murphy, The idempotents of the symmetric group and Nakayama’s conjecture, J. Algebra 81 (1983), no. 1, 258–265. MR 696137, DOI 10.1016/0021-8693(83)90219-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 167-180
- MSC: Primary 20C30; Secondary 05E05, 05E10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062873-1
- MathSciNet review: 1062873