Rational fibrations in differential homological algebra
HTML articles powered by AMS MathViewer
- by Aniceto Murillo
- Trans. Amer. Math. Soc. 332 (1992), 79-91
- DOI: https://doi.org/10.1090/S0002-9947-1992-1079055-X
- PDF | Request permission
Abstract:
In this paper, a result of [6] is generalized as follows: Given a fibration $F \to E\xrightarrow {p}B$ of simply connected spaces in which either, the fibre has finite dimensional rational cohomology, or, it has finite dimensional rational homotopy and $\rho$ induces a surjection in rational homotopy, we construct an explicit isomorphism, \[ \begin {array}{*{20}{c}} {\varphi :\operatorname {Ext}_{{C^\ast }(B,{\mathbf {Q}})}({\mathbf {Q}},{C^\ast }(B;{\mathbf {Q}}))\hat \otimes \operatorname {Ext}_{{C^\ast }(F;{\mathbf {Q}})}({\mathbf {Q}},{C^\ast }(F,{\mathbf {Q}}))} \\ {\xrightarrow { \cong }\operatorname {Ext}_{{C^\ast }(E;{\mathbf {Q}})}(Q,{C^\ast }(E;{\mathbf {Q}})).} \\ \end {array} \] This is deduced from its "algebraic translation," a more general result in the environment of graded differential homological algebra.References
- Luchezar Avramov and Stephen Halperin, Through the looking glass: a dictionary between rational homotopy theory and local algebra, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 1–27. MR 846435, DOI 10.1007/BFb0075446
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199–236. MR 203730, DOI 10.1007/BF02564371
- Yves Félix and Stephen Halperin, Rational LS category and its applications, Trans. Amer. Math. Soc. 273 (1982), no. 1, 1–38. MR 664027, DOI 10.1090/S0002-9947-1982-0664027-0
- Yves Félix, Stephen Halperin, and Jean-Claude Thomas, Gorenstein spaces, Adv. in Math. 71 (1988), no. 1, 92–112. MR 960364, DOI 10.1016/0001-8708(88)90067-9
- Pierre-Paul Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 3, ix, 17–37 (French, with English summary). MR 552958
- S. Halperin, Lectures on minimal models, Mém. Soc. Math. France (N.S.) 9-10 (1983), 261. MR 736299
- Stephen Halperin, Rational fibrations, minimal models, and fibrings of homogeneous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224. MR 515558, DOI 10.1090/S0002-9947-1978-0515558-4
- Stephen Halperin and Gerson Levin, High skeleta of CW complexes, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 211–217. MR 846450, DOI 10.1007/BFb0075461 J. C. Moore, Algèbre homologique et Homologie des espaces classifiants, Séminaire Henri Cartan 1959/60, exposé 7, École Norm. Sup., Paris, 1960.
- Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 79-91
- MSC: Primary 55P62; Secondary 18G15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1079055-X
- MathSciNet review: 1079055