Pseudo-isotopies of irreducible $3$-manifolds
HTML articles powered by AMS MathViewer
- by Jeff Kiralis
- Trans. Amer. Math. Soc. 332 (1992), 53-78
- DOI: https://doi.org/10.1090/S0002-9947-1992-1140917-6
- PDF | Request permission
Abstract:
It is shown that a certain subspace of the space of all pseudo-isotopies of any irreducible $3$-manifold is connected. This subspace consists of those pseudo-isotopies corresponding to $1$-parameter families of functions which have nondegenerate critical points of index $1$ and $2$ only and which contain no slides among the $2$-handles. Some of the techniques developed are used to prove a weak four-dimensional $h$-cobordism theorem.References
- Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173 (French). MR 292089
- David Gabai, Foliations and the topology of $3$-manifolds, J. Differential Geom. 18 (1983), no. 3, 445–503. MR 723813
- A. Hatcher, On the diffeomorphism group of $S^{1}\times S^{2}$, Proc. Amer. Math. Soc. 83 (1981), no. 2, 427–430. MR 624946, DOI 10.1090/S0002-9939-1981-0624946-2
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Allen Hatcher and John Wagoner, Pseudo-isotopies of compact manifolds, Astérisque, No. 6, Société Mathématique de France, Paris, 1973. With English and French prefaces. MR 0353337
- Harrie Hendriks and François Laudenbach, Difféomorphismes des sommes connexes en dimension trois, Topology 23 (1984), no. 4, 423–443. MR 780734, DOI 10.1016/0040-9383(84)90004-1
- François Laudenbach and Valentin Poénaru, A note on $4$-dimensional handlebodies, Bull. Soc. Math. France 100 (1972), 337–344. MR 317343 J. Milnor, Lectures on the $h$-cobordism theorem, Princeton mathematical notes, 1965. —, Morse theory, Princeton mathematical notes, 1969.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 53-78
- MSC: Primary 57M99; Secondary 57N10, 57N37
- DOI: https://doi.org/10.1090/S0002-9947-1992-1140917-6
- MathSciNet review: 1140917