Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains
HTML articles powered by AMS MathViewer
- by Song-Sun Lin
- Trans. Amer. Math. Soc. 332 (1992), 775-791
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055571-1
- PDF | Request permission
Abstract:
We study the existence of positive nonradial solutions of equation $\Delta u + f(u) = 0$ in ${\Omega _a}$, $u = 0$ on $\partial {\Omega _a}$, where ${\Omega _a} = \{ x \in {\mathbb {R}^n}:a < |x| < 1\}$ is an annulus in ${\mathbb {R}^n}$, $n \geq 2$, and $f$ is positive and superlinear at both $0$ and $\infty$. We use a bifurcation method to show that there is a nonradial bifurcation with mode $k$ at ${a_k} \in (0,1)$ for any positive integer $k$ if $f$ is subcritical and for large $k$ if $f$ is supercritical. When $f$ is subcritical, then a Nehari-type variational method can be used to prove that there exists ${a^{\ast } } \in (0,1)$ such that for any $a \in ({a^{\ast } },1)$, the equation has a nonradial solution on ${\Omega _a}$.References
- C. Bandle, C. V. Coffman, and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), no. 3, 322–345. MR 903391, DOI 10.1016/0022-0396(87)90123-9
- C. Bandle and L. A. Peletier, Nonlinear elliptic problems with critical exponent in shrinking annuli, Math. Ann. 280 (1988), no. 1, 1–19. MR 928294, DOI 10.1007/BF01474177
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI 10.1002/cpa.3160360405
- Charles V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), no. 3, 429–437. MR 760381, DOI 10.1016/0022-0396(84)90153-0
- Xabier Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), no. 1, 69–92. MR 904816, DOI 10.1016/0022-0396(87)90169-0
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879 D. Henry, Topics in nonlinear analysis, Trabalho de Mathematica No. 192, Universidade de Brasilia, 1982.
- Bernhard Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Mathematics, vol. 1150, Springer-Verlag, Berlin, 1985. MR 810619, DOI 10.1007/BFb0075060
- M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by A. H. Armstrong; translation edited by J. Burlak. MR 0159197
- Song-Sun Lin, On non-radially symmetric bifurcation in the annulus, J. Differential Equations 80 (1989), no. 2, 251–279. MR 1011150, DOI 10.1016/0022-0396(89)90084-3
- Song-Sun Lin, On the existence of positive radial solutions for nonlinear elliptic equations in annular domains, J. Differential Equations 81 (1989), no. 2, 221–233. MR 1016080, DOI 10.1016/0022-0396(89)90121-6
- Song Sun Lin, Positive radial solutions and nonradial bifurcation for semilinear elliptic equations in annular domains, J. Differential Equations 86 (1990), no. 2, 367–391. MR 1064016, DOI 10.1016/0022-0396(90)90035-N
- Kevin McLeod and James Serrin, Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\textbf {R}^n$, Arch. Rational Mech. Anal. 99 (1987), no. 2, 115–145. MR 886933, DOI 10.1007/BF00275874
- Zeev Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101–123. MR 111898, DOI 10.1090/S0002-9947-1960-0111898-8 W.-M. Ni, Some aspects of semilinear elliptic equations, Lecture Notes, National Tsing Hua University, Hsinchu, Taiwan, May 1987. —, Recent progress in semilinear elliptic equations, Solutions for Nonlinear Elliptic Equations (T. Suzuki, ed.), RIMS Kokyuroku 679, Research Institute for Mathematical Science, Kyoto University, Kyoto, Japan, February, 1989.
- Wei-Ming Ni and Roger D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$, Comm. Pure Appl. Math. 38 (1985), no. 1, 67–108. MR 768105, DOI 10.1002/cpa.3160380105
- Paul H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis 7 (1971), 487–513. MR 0301587, DOI 10.1016/0022-1236(71)90030-9
- Joel A. Smoller and Arthur G. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Comm. Math. Phys. 105 (1986), no. 3, 415–441. MR 848648
- Takashi Suzuki and Ken’ichi Nagasaki, On the nonlinear eigenvalue problem $\Delta u+\lambda e^u=0$, Trans. Amer. Math. Soc. 309 (1988), no. 2, 591–608. MR 961602, DOI 10.1090/S0002-9947-1988-0961602-6
- Takashi Suzuki and Ken’ichi Nagasaki, Lifting of local subdifferentiations and elliptic boundary value problems on symmetric domains. I, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 1, 1–4. MR 953750
- Takashi Suzuki, Symmetric domains and elliptic equations, Recent topics in nonlinear PDE, IV (Kyoto, 1988) North-Holland Math. Stud., vol. 160, North-Holland, Amsterdam, 1989, pp. 153–177. MR 1041380, DOI 10.1016/S0304-0208(08)70511-5
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 775-791
- MSC: Primary 35B05; Secondary 35B32, 35J50, 35J65
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055571-1
- MathSciNet review: 1055571