Existence of smooth solutions to the classical moment problems
HTML articles powered by AMS MathViewer
- by Palle E. T. Jorgensen
- Trans. Amer. Math. Soc. 332 (1992), 839-848
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059709-1
- PDF | Request permission
Abstract:
Let $s(0),s(1), \ldots$ be a given sequence, and define $s(n) = \overline {s( - n)}$ for $n < 0$. If $\Sigma \Sigma {\overline \xi _n}{\xi _m}s(m - n) \geq 0$ holds for all finite sequences ${({\xi _n})_{n \in \mathbb {Z}}}$, then it is known that there is a positive Borel measure $\mu$ on the circle $\mathbb {T}$ such that $s(n) = \smallint _{ - \pi }^\pi {{e^{int}}d\mu (t)}$, and conversely. Our main theorem provides a necessary and sufficient condition on the sequence $(s(n))$ that the measure $\mu$ may be chosen to be smooth. A measure $\mu$ is said to be smooth if it has the same spectral type as the operator $id/dt$ acting on ${L^2}(\mathbb {T})$ with respect to Haar measure $dt$ on $\mathbb {T}$: Equivalently, $\mu$ is a superposition (possibly infinite) of measures of the form $|w(t){|^2}dt$ with $w \in {L^2}(\mathbb {T})$ such that $dw/dt \in {L^2}(\mathbb {T})$. The condition is stated purely in terms of the initially given sequence $(s(n))$: We show that a smooth representation exists if and only if, for some $\varepsilon \in {\mathbb {R}_ + }$, the a priori estimate \[ \sum {\sum {s(m - n){{\overline \xi }_n}{\xi _m} \geq \varepsilon {{\left | {\sum {ns(n){\xi _n}} } \right |}^2}} } \] is valid for all finite double sequences $({\xi _n})$. An analogous result is proved for the determinate (Hamburger) moment problem on the line. But the corresponding result does not hold for the indeterminate moment problem.References
- N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh and London, 1965.
N. I. Akhiezer and I. M. Glazman, The theory of linear operators in Hilbert space, vol. II, (2nd ed.), Ungar, New York, 1966.
- Ch. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vi, 99–114 (English, with French summary). MR 638619
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. 1, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, New York, 1987. $C^\ast$- and $W^\ast$-algebras, symmetry groups, decomposition of states. MR 887100, DOI 10.1007/978-3-662-02520-8 N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1967.
- Hans Ludwig Hamburger, Hermitian transformations of deficiency-index $(1,1)$, Jacobi matrices and undetermined moment problems, Amer. J. Math. 66 (1944), 489–522. MR 11169, DOI 10.2307/2371763
- Palle E. T. Jørgensen, A uniqueness theorem for the Heisenberg-Weyl commutation relations with nonselfadjoint position operator, Amer. J. Math. 103 (1981), no. 2, 273–287. MR 610477, DOI 10.2307/2374217
- Palle E. T. Jorgensen, Operators and representation theory, North-Holland Mathematics Studies, vol. 147, North-Holland Publishing Co., Amsterdam, 1988. Canonical models for algebras of operators arising in quantum mechanics; Notas de Matemática [Mathematical Notes], 120. MR 919948
- Palle E. T. Jorgensen and Robert T. Moore, Operator commutation relations, Mathematics and its Applications, D. Reidel Publishing Co., Dordrecht, 1984. Commutation relations for operators, semigroups, and resolvents with applications to mathematical physics and representations of Lie groups. MR 746138, DOI 10.1007/978-94-009-6328-3
- Palle T. Jørgensen and Paul S. Muhly, Selfadjoint extensions satisfying the Weyl operator commutation relations, J. Analyse Math. 37 (1980), 46–99. MR 583632, DOI 10.1007/BF02797680 P. E. T. Jorgensen and R. T. Powers, Positive elements for the quantum problem of moments, Preprint, 1989.
- H. J. Landau, Classical background of the moment problem, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 1–15. MR 921082, DOI 10.1090/psapm/037/921082
- H. J. Landau, Maximum entropy and the moment problem, Bull. Amer. Math. Soc. (N.S.) 16 (1987), no. 1, 47–77. MR 866018, DOI 10.1090/S0273-0979-1987-15464-4
- Robert T. Powers, Selfadjoint algebras of unbounded operators. II, Trans. Amer. Math. Soc. 187 (1974), 261–293. MR 333743, DOI 10.1090/S0002-9947-1974-0333743-8
- Reinhard F. Werner, Dilations of symmetric operators shifted by a unitary group, J. Funct. Anal. 92 (1990), no. 1, 166–176. MR 1064692, DOI 10.1016/0022-1236(90)90073-T
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 839-848
- MSC: Primary 44A60; Secondary 42A70, 43A35, 46N99, 47A57
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059709-1
- MathSciNet review: 1059709