Expansions of chromatic polynomials and log-concavity
HTML articles powered by AMS MathViewer
- by Francesco Brenti
- Trans. Amer. Math. Soc. 332 (1992), 729-756
- DOI: https://doi.org/10.1090/S0002-9947-1992-1069745-7
- PDF | Request permission
Abstract:
In this paper we present several results and open problems about logconcavity properties of sequences associated with graph colorings. Five polynomials intimately related to the chromatic polynomial of a graph are introduced and their zeros, combinatorial and log-concavity properties are studied. Four of these polynomials have never been considered before in the literature and some yield new expansions for the chromatic polynomial.References
- Ruth A. Bari, Regular major maps of at most $19$ regions and their $Q$-chromials, J. Combinatorial Theory Ser. B 12 (1972), 132–142. MR 294171, DOI 10.1016/0095-8956(72)90017-2
- Emile Bertin and Radu Theodorescu, On the unimodality of discrete probability measures, Math. Z. 201 (1989), no. 1, 131–137. MR 990194, DOI 10.1007/BF01162000
- Norman Biggs, Algebraic graph theory, Cambridge Tracts in Mathematics, No. 67, Cambridge University Press, London, 1974. MR 0347649
- George D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. of Math. (2) 14 (1912/13), no. 1-4, 42–46. MR 1502436, DOI 10.2307/1967597 —, On the polynomial expressions for the number of ways of coloring a map, Ann. Scuola Norm. Sup. (Pisa) (2) 3 (1934), 85-104.
- G. D. Birkhoff and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60 (1946), 355–451. MR 18401, DOI 10.1090/S0002-9947-1946-0018401-4
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976. MR 0411988
- Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833, DOI 10.1090/memo/0413
- Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833, DOI 10.1090/memo/0413
- Francesco Brenti, Unimodal polynomials arising from symmetric functions, Proc. Amer. Math. Soc. 108 (1990), no. 4, 1133–1141. MR 993741, DOI 10.1090/S0002-9939-1990-0993741-2
- Francesco Brenti, Log-concavity and combinatorial properties of Fibonacci lattices, European J. Combin. 12 (1991), no. 6, 459–476. MR 1136388, DOI 10.1016/S0195-6698(13)80097-2 —, Unimodality, permutation enumeration, and symmetric functions, Pacific J. Math. (to appear).
- Lynne M. Butler, A unimodality result in the enumeration of subgroups of a finite abelian group, Proc. Amer. Math. Soc. 101 (1987), no. 4, 771–775. MR 911049, DOI 10.1090/S0002-9939-1987-0911049-8
- Louis Comtet, Advanced combinatorics, Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. The art of finite and infinite expansions. MR 0460128
- Medha Dhurandhar, Characterization of quadratic and cubic $\sigma$-polynomials, J. Combin. Theory Ser. B 37 (1984), no. 3, 210–220. MR 769363, DOI 10.1016/0095-8956(84)90053-4
- G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71–76. MR 130190, DOI 10.1007/BF02992776
- D. Foata and M. P. Schützenberger, On the rook polynomials of Ferrers relations, Combinatorial theory and its applications, I-III (Proc. Colloq., Balatonfüred, 1969) North-Holland, Amsterdam, 1970, pp. 413–436. MR 0360288
- Roberto W. Frucht and Reinaldo E. Giudici, Some chromatically unique graphs with seven points, Ars Combin. 16 (1983), no. A, 161–172. MR 737088
- Fănică Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combinatorial Theory Ser. B 16 (1974), 47–56. MR 332541, DOI 10.1016/0095-8956(74)90094-x
- Dieter Gernert, A survey of partial proofs for Read’s conjecture and some recent results, IX symposium on operations research. Part I. Sections 1–4 (Osnabrück, 1984) Methods Oper. Res., vol. 49, Athenäum/Hain/Hanstein, Königstein, 1985, pp. 233–238. MR 816964
- P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs, Canadian J. Math. 16 (1964), 539–548. MR 175811, DOI 10.4153/CJM-1964-055-5
- Reinaldo E. Giudici and Ramon M. Vinke, A table of chromatic polynomials, J. Combin. Inform. System Sci. 5 (1980), no. 4, 323–350. MR 609820
- Jay R. Goldman, J. T. Joichi, and Dennis E. White, Rook theory. I. Rook equivalence of Ferrers boards, Proc. Amer. Math. Soc. 52 (1975), 485–492. MR 429578, DOI 10.1090/S0002-9939-1975-0429578-4
- Jay R. Goldman, J. T. Joichi, and Dennis E. White, Rook theory. III. Rook polynomials and the chromatic structure of graphs, J. Combin. Theory Ser. B 25 (1978), no. 2, 135–142. MR 0541009, DOI 10.1016/0095-8956(78)90033-3
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969. MR 0256911 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, Cambridge, 1952.
- André Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), no. 1, 1–82 (French, with English summary). MR 633783, DOI 10.1016/0001-8708(81)90052-9
- Samuel Karlin, Total positivity. Vol. I, Stanford University Press, Stanford, Calif., 1968. MR 0230102
- Robert R. Korfhage, $\sigma$-polynomials and graph coloring, J. Combinatorial Theory Ser. B 24 (1978), no. 2, 137–153. MR 491301, DOI 10.1016/0095-8956(78)90015-1
- Robert R. Korfhage, A note on quadratic $\sigma$-polynomials, Discrete Math. 69 (1988), no. 2, 195–196. MR 937783, DOI 10.1016/0012-365X(88)90018-0
- Albert Nijenhuis, On permanents and the zeros of rook polynomials, J. Combinatorial Theory Ser. A 21 (1976), no. 2, 240–244. MR 416936, DOI 10.1016/0097-3165(76)90068-6
- Kathleen M. O’Hara, Unimodality of Gaussian coefficients: a constructive proof, J. Combin. Theory Ser. A 53 (1990), no. 1, 29–52. MR 1031611, DOI 10.1016/0097-3165(90)90018-R G. Pólya and G. Szegö, Problems and theorems in analysis, Vols. I and II, Springer-Verlag, Berlin and Heidelberg, 1976.
- Robert A. Proctor, Representations of ${\mathfrak {s}}{\mathfrak {l}}(2,\,\textbf {C})$ on posets and the Sperner property, SIAM J. Algebraic Discrete Methods 3 (1982), no. 2, 275–280. MR 655567, DOI 10.1137/0603026
- Robert A. Proctor, Solution of two difficult combinatorial problems with linear algebra, Amer. Math. Monthly 89 (1982), no. 10, 721–734. MR 683197, DOI 10.2307/2975833
- Ronald C. Read, An introduction to chromatic polynomials, J. Combinatorial Theory 4 (1968), 52–71. MR 224505
- Ronald C. Read, A large family of chromatic polynomials, Proceedings of the Third Caribbean Conference on Combinatorics and Computing (Bridgetown, 1981) University of the West Indies, Cave Hill Campus, Barbados, 1981, pp. 23–41. MR 657188 —, Some applications of computers in graph theory, Selected Topics in Graph Theory (L. W. Beineke and R. J. Wilson, eds.), Academic Press, London, 1978, pp. 417-444.
- Donald J. Rose, Triangulated graphs and the elimination process, J. Math. Anal. Appl. 32 (1970), 597–609. MR 270957, DOI 10.1016/0022-247X(70)90282-9
- Bruce E. Sagan, Inductive and injective proofs of log concavity results, Discrete Math. 68 (1988), no. 2-3, 281–292. MR 926131, DOI 10.1016/0012-365X(88)90120-3 —, Log-concave sequences of symmetric functions and analogs of the Jacobi-Trudi determinant, Preprint.
- Richard P. Stanley, Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, Providence, R.I., 1972. MR 0332509
- R. P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197–217. MR 309815, DOI 10.1007/BF02945028
- Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171–178. MR 317988, DOI 10.1016/0012-365X(73)90108-8
- Richard P. Stanley, Balanced Cohen-Macaulay complexes, Trans. Amer. Math. Soc. 249 (1979), no. 1, 139–157. MR 526314, DOI 10.1090/S0002-9947-1979-0526314-6
- Richard P. Stanley, Unimodal sequences arising from Lie algebras, Combinatorics, representation theory and statistical methods in groups, Lecture Notes in Pure and Appl. Math., vol. 57, Dekker, New York, 1980, pp. 127–136. MR 588199
- Richard P. Stanley, Unimodality and Lie superalgebras, Stud. Appl. Math. 72 (1985), no. 3, 263–281. MR 790132, DOI 10.1002/sapm1985723263 —, Enumerative combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Monterey, Calif., 1986. —, Generalized $h$-vectors, intersection cohomology of toric varieties, and related results, Adv. Stud. Pure Math. 11 (1987), 187-213.
- Richard P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Graph theory and its applications: East and West (Jinan, 1986) Ann. New York Acad. Sci., vol. 576, New York Acad. Sci., New York, 1989, pp. 500–535. MR 1110850, DOI 10.1111/j.1749-6632.1989.tb16434.x
- Dennis Stanton and Dennis White, Constructive combinatorics, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1986. MR 843332, DOI 10.1007/978-1-4612-4968-9
- W. T. Tutte, The golden ratio in the theory of chromatic polynomials, Ann. New York Acad. Sci. 175 (1970), 391–402. MR 265218
- W. T. Tutte, Chromials, Hypergraph Seminar (Proc. First Working Sem., Ohio State Univ., Columbus, Ohio, 1972; dedicated to Arnold Ross), Lecture Notes in Math., Vol. 411, Springer, Berlin, 1974, pp. 243–266. MR 0369134 D. Wagner, Enumerative combinatorics of partially ordered sets, and total positivity of Hadamard products, Ph.D. Thesis, Massachusetts Institute of Technology, 1989.
- David G. Wagner, The partition polynomial of a finite set system, J. Combin. Theory Ser. A 56 (1991), no. 1, 138–159. MR 1082848, DOI 10.1016/0097-3165(91)90027-E
- David G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459–483. MR 1145841, DOI 10.1016/0022-247X(92)90261-B
- D. J. A. Welsh, Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0427112
- Dennis E. White, Monotonicity and unimodality of the pattern inventory, Adv. in Math. 38 (1980), no. 1, 101–108. MR 594996, DOI 10.1016/0001-8708(80)90059-6
- Hassler Whitney, The coloring of graphs, Ann. of Math. (2) 33 (1932), no. 4, 688–718. MR 1503085, DOI 10.2307/1968214
- D. R. Woodall, Zeros of chromatic polynomials, Combinatorial surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977) Academic Press, London, 1977, pp. 199–223. MR 0463010
- Shao Ji Xu, On $\sigma$-polynomials, Discrete Math. 69 (1988), no. 2, 189–194. MR 937782, DOI 10.1016/0012-365X(88)90017-9
- Doron Zeilberger, Kathy O’Hara’s constructive proof of the unimodality of the Gaussian polynomials, Amer. Math. Monthly 96 (1989), no. 7, 590–602. MR 1008789, DOI 10.2307/2325177
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 729-756
- MSC: Primary 05C15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1069745-7
- MathSciNet review: 1069745