Spectral multiplicity for $\textrm {Gl}_ n(\textbf {R})$
HTML articles powered by AMS MathViewer
- by Jonathan Huntley
- Trans. Amer. Math. Soc. 332 (1992), 875-888
- DOI: https://doi.org/10.1090/S0002-9947-1992-1102223-5
- PDF | Request permission
Abstract:
We study the behavior of the cuspidal spectrum of $\Gamma \backslash \mathcal {H}$, where $\mathcal {H}$ is associated to $\operatorname {Gl}_n(R)$ and $\Gamma$ is cofinite but not compact. By a technique that modifies the Lax-Phillips technique and uses ideas from wave equation techniques, if $r$ is the dimension of $\mathcal {H}$, ${N_\alpha }(\lambda )$ is the counting function for the Laplacian attached to a Hilbert space ${H_\alpha }$, ${M_\alpha }(\lambda )$ is the multiplicity function, and ${H_0}$ is the space of cusp forms, we obtain the following results: Theorem 1. There exists a space of functions ${H^1}$, containing all cusp forms, such that \[ N\prime (\lambda ) = {C_r}({\text {Vol}}\;X){\lambda ^{\frac {r} {2}}} + O({\lambda ^{\frac {{r - 1}} {2}}}{\lambda ^{\frac {1} {{n + 1}}}}{(\log \lambda )^{n - 1}}).\] Theorem 2. \[ {M_0}(\lambda ) = O({\lambda ^{\frac {{r - 1}} {2}}}{\lambda ^{\frac {1} {{n + 1}}}}{(\log \lambda )^{n - 1}}).\]References
- Shmuel Agmon, On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math. 18 (1965), 627–663. MR 198287, DOI 10.1002/cpa.3160180405
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- R. Courant, Über die Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Math. Z. 7 (1920), no. 1-4, 1–57 (German). MR 1544417, DOI 10.1007/BF01199396
- Harold Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Differential Geometry 17 (1982), no. 2, 239–253. MR 664496
- Douglas Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), no. 2, 293–317. MR 934172, DOI 10.2140/pjm.1988.132.293
- Jonathan Huntley and David Tepper, A local Weyl’s law, the angular distribution and multiplicity of cusp forms on product spaces, Trans. Amer. Math. Soc. 330 (1992), no. 1, 97–110. MR 1053114, DOI 10.1090/S0002-9947-1992-1053114-X
- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 609014, DOI 10.1007/BF02391913
- Jonathan Huntley, Spectral multiplicity on products of hyperbolic spaces, Proc. Amer. Math. Soc. 111 (1991), no. 1, 1–12. MR 1031667, DOI 10.1090/S0002-9939-1991-1031667-X P. Lax and R. Philips, Scattering theory for automorphic forms, Princeton Univ. Press, Princeton, N.J., 1974.
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5 G. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl. 109 (1977) 33-45.
- R. Seeley, An estimate near the boundary for the spectral function of the Laplace operator, Amer. J. Math. 102 (1980), no. 5, 869–902. MR 590638, DOI 10.2307/2374196
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. II, Springer-Verlag, Berlin, 1988. MR 955271, DOI 10.1007/978-1-4612-3820-1 H. Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1911), 110-117.
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 332 (1992), 875-888
- MSC: Primary 11F72; Secondary 11F46, 11F55, 22E30, 58G25
- DOI: https://doi.org/10.1090/S0002-9947-1992-1102223-5
- MathSciNet review: 1102223