Homotopy invariants of nonorientable $4$-manifolds
HTML articles powered by AMS MathViewer
- by Myung Ho Kim, Sadayoshi Kojima and Frank Raymond
- Trans. Amer. Math. Soc. 333 (1992), 71-81
- DOI: https://doi.org/10.1090/S0002-9947-1992-1028758-1
- PDF | Request permission
Abstract:
We define a ${{\mathbf {Z}}_4}$-quadratic function on ${\pi _2}$ for nonorientable $4$-manifolds and show that it is a homotopy invariant. We then use it to distinguish homotopy types of certain manifolds that arose from an analysis of toral action on nonorientable $4$-manifolds.References
- Michael Hartley Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982), no. 3, 357–453. MR 679066
- Ian Hambleton and Matthias Kreck, On the classification of topological $4$-manifolds with finite fundamental group, Math. Ann. 280 (1988), no. 1, 85–104. MR 928299, DOI 10.1007/BF01474183 S. Mac Lane, Cohomology theory of abelian groups, Proc. Internat. Math. Congr., vol. 2, 1950, pp. 8-14. S. Mac Lane and J. H. C. Whitehead, On the $3$-type of a complex, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 41-48.
- Yukio Matsumoto, Knot cobordism groups and surgery in codimension two, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 253–317. MR 334228
- C. T. C. Wall, Poincaré complexes. I, Ann. of Math. (2) 86 (1967), 213–245. MR 217791, DOI 10.2307/1970688
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
- J. H. C. Whitehead, On simply connected, $4$-dimensional polyhedra, Comment. Math. Helv. 22 (1949), 48–92. MR 29171, DOI 10.1007/BF02568048
- Hassler Whitney, The general type of singularity of a set of $2n-1$ smooth functions of $n$ variables, Duke Math. J. 10 (1943), 161–172. MR 7784
- W. Browder and G. R. Livesay, Fixed point free involutions on homotopy spheres, Tohoku Math. J. (2) 25 (1973), 69–87. MR 321077, DOI 10.2748/tmj/1178241416
- I. Hambleton and R. J. Milgram, Poincaré transversality for double covers, Canadian J. Math. 30 (1978), no. 6, 1319–1330. MR 511566, DOI 10.4153/CJM-1978-109-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 71-81
- MSC: Primary 57N13; Secondary 57M99
- DOI: https://doi.org/10.1090/S0002-9947-1992-1028758-1
- MathSciNet review: 1028758