On the Künneth formula for intersection cohomology
HTML articles powered by AMS MathViewer
- by Daniel C. Cohen, Mark Goresky and Lizhen Ji
- Trans. Amer. Math. Soc. 333 (1992), 63-69
- DOI: https://doi.org/10.1090/S0002-9947-1992-1052904-7
- PDF | Request permission
Abstract:
We find the natural perversity functions for which intersection cohomology satisfies the Künneth formula.References
- A. Borel et al., Intersection cohomology, Birkhäuser, Boston, Mass., 1984.
J. P. Brasselet, M. Goresky, and R. MacPherson, Piecewise linear differential forms with poles (to appear).
- Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 91–146. MR 573430
- Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, DOI 10.1016/0040-9383(80)90003-8
- Mark Goresky and Robert MacPherson, Intersection homology. II, Invent. Math. 72 (1983), no. 1, 77–129. MR 696691, DOI 10.1007/BF01389130
- Mark Goresky and Paul Siegel, Linking pairings on singular spaces, Comment. Math. Helv. 58 (1983), no. 1, 96–110. MR 699009, DOI 10.1007/BF02564627
- Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190, DOI 10.1007/978-3-642-82783-9
- Henry C. King, Topological invariance of intersection homology without sheaves, Topology Appl. 20 (1985), no. 2, 149–160. MR 800845, DOI 10.1016/0166-8641(85)90075-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 63-69
- MSC: Primary 55N33
- DOI: https://doi.org/10.1090/S0002-9947-1992-1052904-7
- MathSciNet review: 1052904