Removing point singularities of Riemannian manifolds
HTML articles powered by AMS MathViewer
- by P. D. Smith and Deane Yang
- Trans. Amer. Math. Soc. 333 (1992), 203-219
- DOI: https://doi.org/10.1090/S0002-9947-1992-1052910-2
- PDF | Request permission
Abstract:
We study the behavior of geodesics passing through a point singularity of a Riemannian manifold. In particular, we show that if the curvature does not blow up too rapidly near the singularity, then the singularity is at worst an orbifold singularity. The idea is to construct the exponential map centered at a singularity. Since there is no tangent space at the singularity, a surrogate is needed. We show that the vector space of radially parallel vector fields is well defined and that there is a correspondence between unit radially parallel vector fields and geodesics emanating from the singular point.References
- Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455–490. MR 999661, DOI 10.1090/S0894-0347-1989-0999661-1
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Peter Buser and Hermann Karcher, Gromov’s almost flat manifolds, Astérisque, vol. 81, Société Mathématique de France, Paris, 1981. MR 619537
- Jeff Cheeger and Mikhael Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded. II, J. Differential Geom. 32 (1990), no. 1, 269–298. MR 1064875
- Dennis M. DeTurck and Jerry L. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 249–260. MR 644518
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- Jürgen Jost, Harmonic mappings between Riemannian manifolds, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 4, Australian National University, Centre for Mathematical Analysis, Canberra, 1984. MR 756629
- Jürgen Jost and Hermann Karcher, Geometrische Methoden zur Gewinnung von a-priori-Schranken für harmonische Abbildungen, Manuscripta Math. 40 (1982), no. 1, 27–77 (German, with English summary). MR 679120, DOI 10.1007/BF01168235
- H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977), no. 5, 509–541. MR 442975, DOI 10.1002/cpa.3160300502
- Deane Yang, Convergence of Riemannian manifolds with integral bounds on curvature. I, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 1, 77–105. MR 1152614
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 203-219
- MSC: Primary 53C21; Secondary 53C22
- DOI: https://doi.org/10.1090/S0002-9947-1992-1052910-2
- MathSciNet review: 1052910