The regular module problem. I
HTML articles powered by AMS MathViewer
- by T. R. Berger, B. B. Hargraves and C. Shelton
- Trans. Amer. Math. Soc. 333 (1992), 251-274
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055566-8
- PDF | Request permission
Abstract:
In the study of induced representations the following problem arises: Let $H = AG$ be a finite solvable group and ${\mathbf {k}}$ a field with $\operatorname {char}{\mathbf {k}}\nmid \; |A|$. Let $V$ be an irreducible, faithful, primitive ${\mathbf {k}}[AG]$-module. Suppose $H$ contains a normal extraspecial $r$-subgroup $R$ with $Z(R) \leq Z(H)$ and that $A$ acts faithfully on $R$. Under what conditions does $A$ have a regular direct summand in $V$? In this paper we consider this question under the hypotheses that $G = MR$, where $1 \ne M$ is normal abelian in $AM$, $A$ is nilpotent, $(|A|,|MR|) = (|M|,|R|) = 1$ , and $R/Z(R)$ is a faithful, irreducible $AM$-module. We show that $A$ has at least three regular direct summands in $V$ unless $|A|$, $\exp (M)$, and $r$ satisfy certain very restrictive conditions.References
- T. R. Berger, Hall-Higman type theorems. I, Canadian J. Math. 26 (1974), 513–531. MR 399228, DOI 10.4153/CJM-1974-048-5
- T. R. Berger, Hall-Higman type theorems. II, Trans. Amer. Math. Soc. 205 (1975), 47–69. MR 399229, DOI 10.1090/S0002-9947-1975-0399229-0
- T. R. Berger, Hall-Higman type theorems. III, Trans. Amer. Math. Soc. 228 (1977), 47–83. MR 437627, DOI 10.1090/S0002-9947-1977-0437627-9
- T. R. Berger, Hall-Higman type theorems. IV, Proc. Amer. Math. Soc. 37 (1973), 317–325. MR 466279, DOI 10.1090/S0002-9939-1973-0466279-9
- T. R. Berger, Hall-Higman type theorems. V, Pacific J. Math. 73 (1977), no. 1, 1–62. MR 482784
- T. R. Berger, Hall-Higman type theorems. V, Pacific J. Math. 73 (1977), no. 1, 1–62. MR 482784
- T. R. Berger, Hall-Higman type theorems. V, Pacific J. Math. 73 (1977), no. 1, 1–62. MR 482784
- T. R. Berger, Representation theory and solvable groups: length type problems, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 431–441. MR 604618
- T. R. Berger, B. B. Hargraves, and C. Shelton, The regular module problem. I, Trans. Amer. Math. Soc. 333 (1992), no. 1, 251–274. MR 1055566, DOI 10.1090/S0002-9947-1992-1055566-8
- T. R. Berger, B. B. Hargraves, and C. Shelton, The regular module problem. I, Trans. Amer. Math. Soc. 333 (1992), no. 1, 251–274. MR 1055566, DOI 10.1090/S0002-9947-1992-1055566-8
- Roger Carter and Paul Fong, The Sylow $2$-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151. MR 166271, DOI 10.1016/0021-8693(64)90030-4
- David Gluck and I. M. Isaacs, Tensor induction of generalized characters and permutation characters, Illinois J. Math. 27 (1983), no. 3, 514–518. MR 698312
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Beverly Bailey Hargraves, The existence of regular orbits for nilpotent groups, J. Algebra 72 (1981), no. 1, 54–100. MR 634617, DOI 10.1016/0021-8693(81)90312-4
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423
- Alan E. Parks, The $2$-part of the permutation index of a group character, J. Algebra 93 (1985), no. 2, 439–444. MR 786763, DOI 10.1016/0021-8693(85)90169-3
- D. S. Passman, Groups with normal solvable Hall $p^{\prime }$-subgroups, Trans. Amer. Math. Soc. 123 (1966), 99–111. MR 195947, DOI 10.1090/S0002-9947-1966-0195947-2
- Ernest E. Shult, On groups admitting fixed point free abelian operator groups, Illinois J. Math. 9 (1965), 701–720. MR 183792
- Alexandre Turull, Supersolvable automorphism groups of solvable groups, Math. Z. 183 (1983), no. 1, 47–73. MR 701358, DOI 10.1007/BF01187215
- David L. Winter, The automorphism group of an extraspecial $p$-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159–168. MR 297859, DOI 10.1216/RMJ-1972-2-2-159
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 251-274
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055566-8
- MathSciNet review: 1055566