Distortion theorems for Bloch functions
HTML articles powered by AMS MathViewer
- by Xiang Yang Liu and David Minda
- Trans. Amer. Math. Soc. 333 (1992), 325-338
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055809-0
- PDF | Request permission
Abstract:
We establish various distortion theorems for both normalized locally schlicht Bloch functions and normalized Bloch function with branch points. These distortion theorems give lower bounds on either $|f\prime (z)|$ or $\operatorname {Re} f\prime (z)$; most of our distortion theorems are sharp and all extremal functions identified. The main tools used in establishing these distortion theorems are the classical form of Julia’s Lemma and a new version of Julia’s Lemma that applies to certain multiple-valued analytic functions. As applications of these distortion theorems, we obtain known lower bounds for various Bloch constants and also establish improved lower bounds on a number of Marden constants for Bloch, normal and Yosida functions.References
- L. V. Ahlfors and H. Grunsky, Über die Blochsche Konstante, Math. Z. 42 (1937), no. 1, 671–673 (German). MR 1545698, DOI 10.1007/BF01160101
- Lars V. Ahlfors, An extension of Schwarz’s lemma, Trans. Amer. Math. Soc. 43 (1938), no. 3, 359–364. MR 1501949, DOI 10.1090/S0002-9947-1938-1501949-6
- Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0357743 A. Bloch, Les théorèmes de M. Valiron sur les functions entières et la théorie de l’uniformisation, Ann. Fac. Sci. Univ. Toulouse 17 (1925).
- Mario Bonk, On Bloch’s constant, Proc. Amer. Math. Soc. 110 (1990), no. 4, 889–894. MR 979048, DOI 10.1090/S0002-9939-1990-0979048-8 —, Extremal Probleme bei Bloch-Funktionen, Dissertation, Technischen Universität, Carolo-Wilhelmina zu Braunschweig, 1988.
- Maurice Heins, On a class of conformal metrics, Nagoya Math. J. 21 (1962), 1–60. MR 143901
- Edmund Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Z. 30 (1929), no. 1, 608–634 (German). MR 1545082, DOI 10.1007/BF01187791
- C. David Minda, Bloch constants, J. Analyse Math. 41 (1982), 54–84. MR 687945, DOI 10.1007/BF02803394
- C. David Minda, Marden constants for Bloch and normal functions, J. Analyse Math. 42 (1982/83), 117–127. MR 729404, DOI 10.1007/BF02786873
- David Minda, Lower bounds for the hyperbolic metric in convex regions, Rocky Mountain J. Math. 13 (1983), no. 1, 61–69. MR 692577, DOI 10.1216/RMJ-1983-13-1-61
- David Minda, Yosida functions, Lectures on complex analysis (Xian, 1987) World Sci. Publishing, Singapore, 1988, pp. 197–213. MR 996476
- St. Ruscheweyh, E. B. Saff, L. C. Salinas, and R. S. Varga (eds.), Computational methods and function theory, Lecture Notes in Mathematics, vol. 1435, Springer-Verlag, Berlin, 1990. MR 1071757, DOI 10.1007/BFb0087892
- Zeev Nehari, A generalization of Schwarz’ lemma, Duke Math. J. 14 (1947), 1035–1049. MR 23335
- Ernst Peschl, Über die Verwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Typus, Ann. Acad. Sci. Fenn. Ser. A I 336/6 (1963), 22 (German). MR 0165117
- Ernst Peschl, Über unverzweigte konforme Abbildungen, Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185 (1976), no. 1-3, 55–78 (German). Collection in honor of Hans Hornich. MR 0481011
- Ch. Pommerenke, On Bloch functions, J. London Math. Soc. (2) 2 (1970), 689–695. MR 284574, DOI 10.1112/jlms/2.Part_{4}.689
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 325-338
- MSC: Primary 30C75; Secondary 30C25, 30C80, 30D45
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055809-0
- MathSciNet review: 1055809