Global existence, large time behavior and life span of solutions of a semilinear parabolic Cauchy problem
HTML articles powered by AMS MathViewer
- by Tzong-Yow Lee and Wei-Ming Ni
- Trans. Amer. Math. Soc. 333 (1992), 365-378
- DOI: https://doi.org/10.1090/S0002-9947-1992-1057781-6
- PDF | Request permission
Abstract:
We investigate the behavior of the solution $u(x,t)$ of \[ \left \{ {\begin {array}{*{20}{c}} {\frac {{\partial u}} {{\partial t}} = \Delta u + {u^p}} \hfill & {{\text {in}}\;{\mathbb {R}^n} \times (0,T),} \hfill \\ {u(x,0) = \varphi (x)} \hfill & {{\text {in}}\;{\mathbb {R}^n},} \hfill \\ \end {array} } \right .\] where $\Delta = \sum \nolimits _{i = 1}^n {{\partial ^2}/\partial _{{x_i}}^2}$ is the Laplace operator, $p > 1$ is a constant, $T > 0$, and $\varphi$ is a nonnegative bounded continuous function in ${\mathbb {R}^n}$. The main results are for the case when the initial value $\varphi$ has polynomial decay near $x = \infty$. Assuming $\varphi \sim \lambda {(1 + |x|)^{ - a}}$ with $\lambda$, $a > 0$, various questions of global (in time) existence and nonexistence, large time behavior or life span of the solution $u(x,t)$ are answered in terms of simple conditions on $\lambda$, $a$, $p$ and the space dimension $n$.References
- D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33–76. MR 511740, DOI 10.1016/0001-8708(78)90130-5
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
- Alain Haraux and Fred B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J. 31 (1982), no. 2, 167–189. MR 648169, DOI 10.1512/iumj.1982.31.31016
- Kantaro Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503–505. MR 338569
- Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330. MR 160044, DOI 10.1002/cpa.3160160307
- Kusuo Kobayashi, Tunekiti Sirao, and Hiroshi Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), no. 3, 407–424. MR 450783, DOI 10.2969/jmsj/02930407
- Howard A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), no. 2, 262–288. MR 1056055, DOI 10.1137/1032046
- David H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. MR 0463624
- Xuefeng Wang, On the Cauchy problem for reaction-diffusion equations, Trans. Amer. Math. Soc. 337 (1993), no. 2, 549–590. MR 1153016, DOI 10.1090/S0002-9947-1993-1153016-5
- Fred B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math. 38 (1981), no. 1-2, 29–40. MR 599472, DOI 10.1007/BF02761845
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 365-378
- MSC: Primary 35K55; Secondary 35B30, 35B40
- DOI: https://doi.org/10.1090/S0002-9947-1992-1057781-6
- MathSciNet review: 1057781