Some integrable subalgebras of the Lie algebras of infinite-dimensional Lie groups
HTML articles powered by AMS MathViewer
- by J. Leslie
- Trans. Amer. Math. Soc. 333 (1992), 423-443
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059710-8
- PDF | Request permission
Abstract:
This paper gives a proof of Lie’s second fundamental theorem in the context of infinite dimensional Lie groups; that is, we define a class of Lie subalgebras of the Lie algebra of a large class of infinite dimensional Lie groups, say $G$ , which can be realized as the Lie algebras of Lie subgroups of $G$ .References
- Malcolm Adams, Tudor Ratiu, and Rudolf Schmid, A Lie group structure for pseudodifferential operators, Math. Ann. 273 (1986), no. 4, 529–551. MR 826458, DOI 10.1007/BF01472130 V. L. Averbuck and O. G. Smolyanov, The theory of differentiation in linear topological spaces, Russian Math. Surveys 22 (1967), 201-258.
- Nicolas Bourbaki, Espaces vectoriels topologiques. Chapitres 1 à 5, New edition, Masson, Paris, 1981 (French). Éléments de mathématique. [Elements of mathematics]. MR 633754
- J. F. Colombeau, Sur les équations différentielles dans les espaces vectoriels topologiques ou bornologiques, Rev. Roumaine Math. Pures Appl. 20 (1975), 19–32 (French). MR 383076
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- David G. Ebin and Jerrold Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102–163. MR 271984, DOI 10.2307/1970699
- I. M. Gel′fand, M. I. Graev, and A. M. Vershik, Models of representations of current groups, Representations of Lie groups and Lie algebras (Budapest, 1971) Akad. Kiadó, Budapest, 1985, pp. 121–179. MR 829048
- Henri Hogbe-Nlend, Bornologies and functional analysis, North-Holland Mathematics Studies, Vol. 26, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Introductory course on the theory of duality topology-bornology and its use in functional analysis; Translated from the French by V. B. Moscatelli. MR 0500064 O. Kobayashi, Y. Maeda, H. Omori, and A. Yoshioka, On regular Fréchei-Lie groups. IV, Tokyo J. Math. 5 (1981).
- J. A. Leslie, On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263–271. MR 210147, DOI 10.1016/0040-9383(67)90038-9
- J. Leslie, On the group of real analytic diffeomorphisms of a compact real analytic manifold, Trans. Amer. Math. Soc. 274 (1982), no. 2, 651–669. MR 675073, DOI 10.1090/S0002-9947-1982-0675073-5 —, On the subgroups of infinite dimensional Lie groups, Bull. Amer. Math. Soc. (N.S.) 16 (1987).
- J. A. Leslie, Some Frobenius theorems in global analysis, J. Differential Geometry 2 (1968), 279–297. MR 251750, DOI 10.4310/jdg/1214428441 J. Milnor, On infinite dimensional Lie groups, September 1982 (unpublished). —, Remarks on infinite dimensional Lie groups, Proc. Summer School on Quantum Gravity, 1983.
- Hideki Omori, Groups of diffeomorphisms and their subgroups, Trans. Amer. Math. Soc. 179 (1973), 85–122. MR 377975, DOI 10.1090/S0002-9947-1973-0377975-0
- Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587
- H. Whitney and F. Bruhat, Quelques propriétés fondamentales des ensembles analytiques-réels, Comment. Math. Helv. 33 (1959), 132–160 (French). MR 102094, DOI 10.1007/BF02565913
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 423-443
- MSC: Primary 22E65; Secondary 17B65
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059710-8
- MathSciNet review: 1059710