Connected simple systems, transition matrices, and heteroclinic bifurcations
HTML articles powered by AMS MathViewer
- by Christopher McCord and Konstantin Mischaikow
- Trans. Amer. Math. Soc. 333 (1992), 397-422
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059711-X
- PDF | Request permission
Abstract:
Given invariant sets $A$, $B$ , and $C$ , and connecting orbits $A \to B$ and $B \to C$, we state very general conditions under which they bifurcate to produce an $A \to C$ connecting orbit. In particular, our theorem is applicable in settings for which one has an admissible semiflow on an isolating neighborhood of the invariant sets and the connecting orbits, and for which the Conley index of the invariant sets is the same as that of a hyperbolic critical point. Our proof depends on the connected simple system associated with the Conley index for isolated invariant sets. Furthermore, we show how this change in connected simple systems can be associated with transition matrices, and hence, connection matrices. This leads to some simple examples in which the nonuniqueness of the connection matrix can be explained by changes in the connected simple system.References
- S.-N. Chow, B. Deng and D. Terman, The bifurcation of a homoclinic orbit—a topological approach, preprint CDSNS90-12.
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133, DOI 10.1090/cbms/038
- Robert Franzosa, Index filtrations and the homology index braid for partially ordered Morse decompositions, Trans. Amer. Math. Soc. 298 (1986), no. 1, 193–213. MR 857439, DOI 10.1090/S0002-9947-1986-0857439-7
- Robert D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), no. 2, 561–592. MR 978368, DOI 10.1090/S0002-9947-1989-0978368-7
- Robert D. Franzosa, The continuation theory for Morse decompositions and connection matrices, Trans. Amer. Math. Soc. 310 (1988), no. 2, 781–803. MR 973177, DOI 10.1090/S0002-9947-1988-0973177-6
- Robert D. Franzosa and Konstantin Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), no. 2, 270–287. MR 927003, DOI 10.1016/0022-0396(88)90028-9
- Hiroshi Kokubu, Homoclinic and heteroclinic bifurcations of vector fields, Japan J. Appl. Math. 5 (1988), no. 3, 455–501. MR 965875, DOI 10.1007/BF03167912
- Henry L. Kurland, The Morse index of an isolated invariant set is a connected simple system, J. Differential Equations 42 (1981), no. 2, 234–259. MR 641650, DOI 10.1016/0022-0396(81)90028-0 —, Homotopy invariants of repeller attractor paris, I. The Puppe sequence of an $R - A$ pair, J. Differential Equations 46 (1982). —, Homotopy invariants of repeller attractor pairs, II. Continuation of $R - A$ pairs, J. Differential Equations 49 (1983).
- Konstantin Mischaikow, Existence of generalized homoclinic orbits for one parameter families of flows, Proc. Amer. Math. Soc. 103 (1988), no. 1, 59–68. MR 938645, DOI 10.1090/S0002-9939-1988-0938645-7
- Konstantin Mischaikow, Transition systems, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 1-2, 155–175. MR 1007542, DOI 10.1017/S0308210500028225
- Richard Moeckel, Morse decompositions and connection matrices, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 227–249. MR 967640, DOI 10.1017/S0143385700009445
- James F. Reineck, Connecting orbits in one-parameter families of flows, Ergodic Theory Dynam. Systems 8$^*$ (1988), no. Charles Conley Memorial Issue, 359–374. MR 967644, DOI 10.1017/S0143385700009482
- Krzysztof P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag, Berlin, 1987. MR 910097, DOI 10.1007/978-3-642-72833-4
- Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1–41. MR 797044, DOI 10.1090/S0002-9947-1985-0797044-3
- Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR 688146, DOI 10.1007/978-1-4684-0152-3
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 397-422
- MSC: Primary 58F14; Secondary 34C23, 34C35, 58F25
- DOI: https://doi.org/10.1090/S0002-9947-1992-1059711-X
- MathSciNet review: 1059711