Fourier multipliers on Lipschitz curves
HTML articles powered by AMS MathViewer
- by Alan McIntosh and Tao Qian
- Trans. Amer. Math. Soc. 333 (1992), 157-176
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062194-7
- PDF | Request permission
Abstract:
We develop the theory of Fourier multipliers acting on ${L_p}(\gamma )$ where $\gamma$ is a Lipschitz curve of the form $\gamma = \{ x + ig(x)\}$ with $\left \| g\right \| _\infty < \infty$ and $\left \| g\prime \right \| _\infty < \infty$ . The aim is to better understand convolution singular integrals $B$ defined naturally on such curves by \[ Bu(z) = {\text {p.v.}}\int _\gamma {\varphi (z - \zeta )u(\zeta )d\zeta } \] for almost all $z \in \gamma$ .References
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- R. R. Coifman and Y. Meyer, Fourier analysis of multilinear convolutions, Calderón’s theorem, and analysis of Lipschitz curves, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) Lecture Notes in Math., vol. 779, Springer, Berlin, 1980, pp. 104–122. MR 576041 M. Cowling, I. Doust, A. McIntosh and A. Yagi, Banach space operators with an ${H_\infty }$-functional calculus (in preparation).
- Alan McIntosh, Operators which have an $H_\infty$ functional calculus, Miniconference on operator theory and partial differential equations (North Ryde, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 210–231. MR 912940
- Alan McIntosh and Tao Qian, Fourier theory on Lipschitz curves, Miniconference on harmonic analysis and operator algebras (Canberra, 1987) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 15, Austral. Nat. Univ., Canberra, 1987, pp. 157–166. MR 935598
- Alan McIntosh and Tao Qian, Convolution singular integral operators on Lipschitz curves, Harmonic analysis (Tianjin, 1988) Lecture Notes in Math., vol. 1494, Springer, Berlin, 1991, pp. 142–162. MR 1187074, DOI 10.1007/BFb0087766
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 157-176
- MSC: Primary 42B15; Secondary 47B35, 47G99
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062194-7
- MathSciNet review: 1062194