The level manifold of a generalized Toda equation hierarchy
HTML articles powered by AMS MathViewer
- by Yoshimasa Nakamura
- Trans. Amer. Math. Soc. 333 (1992), 83-94
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062867-6
- PDF | Request permission
Abstract:
The finite nonperiodic Toda lattice equation induces a linear one-parameter flow on a space of rational functions. The level manifold of the Toda equation hierarchy is shown to be a product of lines. Our main results establish a generalization of this Toda hierarchy which will be called the cyclic-Toda hierarchy. It is proved that the cyclic-Toda hierarchy is completely integrable and its level manifold is diffeomorphic to a disjoint union of cylinders.References
- Vladimir I. Arnold, Valery V. Kozlov, and Anatoly I. Neishtadt, Mathematical aspects of classical and celestial mechanics, 3rd ed., Encyclopaedia of Mathematical Sciences, vol. 3, Springer-Verlag, Berlin, 2006. [Dynamical systems. III]; Translated from the Russian original by E. Khukhro. MR 2269239
- R. W. Brockett, Some geometric questions in the theory of linear systems, Proceedings of the IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes (Houston, Tex., 1975) Inst. Electr. Electron. Engrs., New York, 1975, pp. 71–76. MR 0469385
- Etsur\B{o} Date, Masaki Kashiwara, Michio Jimbo, and Tetsuji Miwa, Transformation groups for soliton equations, Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981) World Sci. Publishing, Singapore, 1983, pp. 39–119. MR 725700
- P. Deift, L. C. Li, T. Nanda, and C. Tomei, The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math. 39 (1986), no. 2, 183–232. MR 820068, DOI 10.1002/cpa.3160390203
- P. Deift, L. C. Li, and C. Tomei, Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 42 (1989), no. 4, 443–521. MR 990138, DOI 10.1002/cpa.3160420405
- P. Deift, F. Lund, and E. Trubowitz, Nonlinear wave equations and constrained harmonic motion, Comm. Math. Phys. 74 (1980), no. 2, 141–188. MR 576269
- S. K. Donaldson, Nahm’s equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), no. 3, 387–407. MR 769355
- H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B (3) 9 (1974), 1924–1925. MR 408647 F. R. Gantmacher, The theory of matrices, Chelsea, New York, 1959.
- V. I. Inozemtsev, The finite Toda lattices, Comm. Math. Phys. 121 (1989), no. 4, 629–638. MR 990995
- P. S. Krishnaprasad, Symplectic mechanics and rational functions, Ricerche Automat. 10 (1979), no. 2, 107–135. MR 614258
- P. S. Krishnaprasad and C. F. Martin, On families of systems and deformations, Internat. J. Control 38 (1983), no. 5, 1055–1079. MR 722212, DOI 10.1080/00207178308933129
- Jürgen Moser, Finitely many mass points on the line under the influence of an exponential potential–an integrable system, Dynamical systems, theory and applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974) Lecture Notes in Phys., Vol. 38, Springer, Berlin, 1975, pp. 467–497. MR 0455038
- Jürgen Moser and Alexander P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys. 139 (1991), no. 2, 217–243. MR 1120138
- Yoshimasa Nakamura, Moduli space of $\textrm {SU}(2)$ monopoles and complex cyclic-Toda hierarchy, Comm. Math. Phys. 128 (1990), no. 3, 509–520. MR 1045881
- Yoshimasa Nakamura, Geometry of rational functions and nonlinear integrable systems, SIAM J. Math. Anal. 22 (1991), no. 6, 1744–1754. MR 1129408, DOI 10.1137/0522108
- Yoshimasa Nakamura, Transformation group acting on a self-dual Yang-Mills hierarchy, J. Math. Phys. 29 (1988), no. 1, 244–248. MR 921789, DOI 10.1063/1.528181
- Mikio Sato and Yasuko Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, Nonlinear partial differential equations in applied science (Tokyo, 1982) North-Holland Math. Stud., vol. 81, North-Holland, Amsterdam, 1983, pp. 259–271. MR 730247
- W. W. Symes, The $QR$ algorithm and scattering for the finite nonperiodic Toda lattice, Phys. D 4 (1981/82), no. 2, 275–280. MR 653781, DOI 10.1016/0167-2789(82)90069-0
- K. Takasaki, Hierarchy structure in integrable systems of gauge fields and underlying Lie algebras, Comm. Math. Phys. 127 (1990), no. 2, 225–238. MR 1037101
- Carlos Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984), no. 4, 981–996. MR 771391, DOI 10.1215/S0012-7094-84-05144-5
- Kimio Ueno and Kanehisa Takasaki, Toda lattice hierarchy, Group representations and systems of differential equations (Tokyo, 1982) Adv. Stud. Pure Math., vol. 4, North-Holland, Amsterdam, 1984, pp. 1–95. MR 810623, DOI 10.2969/aspm/00410001
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 83-94
- MSC: Primary 58F07
- DOI: https://doi.org/10.1090/S0002-9947-1992-1062867-6
- MathSciNet review: 1062867