An analogue of Siegelโs $\phi$-operator for automorphic forms for $\textrm {GL}_ n(\textbf {Z})$
HTML articles powered by AMS MathViewer
- by Douglas Grenier
- Trans. Amer. Math. Soc. 333 (1992), 463-477
- DOI: https://doi.org/10.1090/S0002-9947-1992-1066443-0
- PDF | Request permission
Abstract:
If $\mathcal {S}{P_n}$ is the symmetric space of $n \times n$ positive matrices, $Y \in \mathcal {S}{P_n}$ can be decomposed into \[ Y = \left ( {\begin {array}{*{20}{c}} 1 & 0 \\ x & I \\ \end {array} } \right )\left ( {\begin {array}{*{20}{c}} {{v^{ - 1}}} & 0 \\ 0 & {{v^{ - 1/(n - 1)}}W} \\ \end {array} } \right )\left ( {\begin {array}{*{20}{c}} 1 & {{T_x}} \\ 0 & I \\ \end {array} } \right ),\] where $W \in \mathcal {S}{P_{n - 1}}$ . By letting $v \to \infty$ we obtain the $\phi$-operator that attaches to every automorphic form for $G{L_n}(\mathbb {Z})$, $f(Y)$, an automorphic form for $G{L_{n - 1}}(\mathbb {Z})$, $f|\phi (W)$.References
- Thomas E. Bengtson, Bessel functions on $P_{n}$, Pacific J. Math. 108 (1983), no.ย 1, 19โ29. MR 709697, DOI 10.2140/pjm.1983.108.19
- Daniel Bump, Automorphic forms on $\textrm {GL}(3,\textbf {R})$, Lecture Notes in Mathematics, vol. 1083, Springer-Verlag, Berlin, 1984. MR 765698, DOI 10.1007/BFb0100147
- Douglas Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), no.ย 2, 293โ317. MR 934172, DOI 10.2140/pjm.1988.132.293
- K. Imai and A. Terras, The Fourier expansion of Eisenstein series for $\textrm {GL}(3,\,\textbf {Z})$, Trans. Amer. Math. Soc. 273 (1982), no.ย 2, 679โ694. MR 667167, DOI 10.1090/S0002-9947-1982-0667167-5
- N. N. Lebedev, Special functions and their applications, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR 0350075
- Hans Maass, รber eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 121 (1949), 141โ183 (German). MR 31519, DOI 10.1007/BF01329622 โ, Siegelโs modular forms and Dirichlet series, Lecture Notes in Math.,vol.216, Springer-Verlag, New York, 1971.
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47โ87. MR 88511
- Atle Selberg, Discontinuous groups and harmonic analysis, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp.ย 177โ189. MR 0176097
- J. A. Shalika, The multiplicity one theorem for $\textrm {GL}_{n}$, Ann. of Math. (2) 100 (1974), 171โ193. MR 348047, DOI 10.2307/1971071
- Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406, DOI 10.1007/978-1-4612-5128-6
- Audrey Terras, The Chowla-Selberg method for Fourier expansion of higher rank Eisenstein series, Canad. Math. Bull. 28 (1985), no.ย 3, 280โ294. MR 790949, DOI 10.4153/CMB-1985-034-1 A. Vinogradov and L. Takhtadzhyan, Theory of Eisenstein series for the group $SL(3,\mathbb {R})$ and its application to a binary problem, J. Soviet Math 18 (1982), 293-324.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 463-477
- MSC: Primary 11F55; Secondary 11F32, 11F70
- DOI: https://doi.org/10.1090/S0002-9947-1992-1066443-0
- MathSciNet review: 1066443