Noncommutative matrix Jordan algebras
HTML articles powered by AMS MathViewer
- by Robert B. Brown and Nora C. Hopkins
- Trans. Amer. Math. Soc. 333 (1992), 137-155
- DOI: https://doi.org/10.1090/S0002-9947-1992-1068925-4
- PDF | Request permission
Abstract:
We consider noncommutative degree two Jordan algebras $\mathcal {J}$ of two by two matrices whose off diagonal entries are from an anticommutative algebra $\mathcal {S}$ . We give generators and relations for the automorphism group of $\mathcal {J}$ and determine the derivation algebra Der $\mathcal {J}$ in terms of mappings on $\mathcal {S}$ . We also give an explicit construction of all $\mathcal {S}$ for which Der $\mathcal {J}$ does not kill the diagonal idempotents and give conditions for nonisomorphic $\mathcal {S}$ ’s to give isomorphic $\mathcal {J}$ ’s.References
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. MR 559927
- N. Jacobson, Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. 201 (1959), 178–195. MR 106936, DOI 10.1515/crll.1959.201.178
- Lowell J. Paige, A note on noncommutative Jordan algebras, Portugal. Math. 16 (1957), 15–18. MR 99355
- Arthur A. Sagle, On anti-commutative algebras with an invariant form, Canadian J. Math. 16 (1964), 370–378. MR 166233, DOI 10.4153/CJM-1964-037-7
- G. B. Seligman, Modular Lie algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40, Springer-Verlag New York, Inc., New York, 1967. MR 0245627
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 137-155
- MSC: Primary 17A15; Secondary 17A36, 17B60
- DOI: https://doi.org/10.1090/S0002-9947-1992-1068925-4
- MathSciNet review: 1068925