Boundaries of Markov partitions
HTML articles powered by AMS MathViewer
- by Jonathan Ashley, Bruce Kitchens and Matthew Stafford
- Trans. Amer. Math. Soc. 333 (1992), 177-201
- DOI: https://doi.org/10.1090/S0002-9947-1992-1073772-3
- PDF | Request permission
Abstract:
The core of a Markov partition is the nonwandering set of the map restricted to the boundary of the partition. We show that the core of a Markov partition is always a finitely presented system. Then we show that every one sided sofic system occurs as the core of a Markov partition for an $n$-fold covering map on the circle and every two sided sofic system occurs as the core of a Markov partition for a hyperbolic automorphism of the two dimensional torus.References
- Roy L. Adler, L. Wayne Goodwyn, and Benjamin Weiss, Equivalence of topological Markov shifts, Israel J. Math. 27 (1977), no. 1, 48–63. MR 437715, DOI 10.1007/BF02761605
- Roy L. Adler and Benjamin Weiss, Similarity of automorphisms of the torus, Memoirs of the American Mathematical Society, No. 98, American Mathematical Society, Providence, R.I., 1970. MR 0257315
- Roy L. Adler and Brian Marcus, Topological entropy and equivalence of dynamical systems, Mem. Amer. Math. Soc. 20 (1979), no. 219, iv+84. MR 533691, DOI 10.1090/memo/0219
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- Rufus Bowen, On Axiom A diffeomorphisms, Regional Conference Series in Mathematics, No. 35, American Mathematical Society, Providence, R.I., 1978. MR 0482842
- Rufus Bowen, Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), no. 1, 130–132. MR 474415, DOI 10.1090/S0002-9939-1978-0474415-8
- Ethan M. Coven and Michael E. Paul, Endomorphisms of irreducible subshifts of finite type, Math. Systems Theory 8 (1974/75), no. 2, 167–175. MR 383378, DOI 10.1007/BF01762187 E. Coven and W. Reddy, Positively expansive maps of compact manifolds.
- David Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 489–507. MR 922362, DOI 10.1017/S014338570000417X
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
- Wolfgang Krieger, On sofic systems. I, Israel J. Math. 48 (1984), no. 4, 305–330. MR 776312, DOI 10.1007/BF02760631
- Wolfgang Krieger, On the subsystems of topological Markov chains, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 195–202 (1983). MR 693975, DOI 10.1017/S0143385700001516
- Brian Marcus, Factors and extensions of full shifts, Monatsh. Math. 88 (1979), no. 3, 239–247. MR 553733, DOI 10.1007/BF01295238
- Michael Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987. With the collaboration of Albert Fathi and Rémi Langevin; Translated from the French by Joseph Christy. MR 869255, DOI 10.1007/978-1-4757-1947-5
- Matthew Stafford, Markov partitions for expanding maps of the circle, Trans. Amer. Math. Soc. 324 (1991), no. 1, 385–403. MR 1049617, DOI 10.1090/S0002-9947-1991-1049617-3
- Benjamin Weiss, Subshifts of finite type and sofic systems, Monatsh. Math. 77 (1973), 462–474. MR 340556, DOI 10.1007/BF01295322
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 177-201
- MSC: Primary 58F15; Secondary 28D05, 54H20, 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1992-1073772-3
- MathSciNet review: 1073772