$v_ 1$-periodic homotopy groups of exceptional Lie groups: torsion-free cases
HTML articles powered by AMS MathViewer
- by Martin Bendersky, Donald M. Davis and Mamoru Mimura
- Trans. Amer. Math. Soc. 333 (1992), 115-135
- DOI: https://doi.org/10.1090/S0002-9947-1992-1116310-9
- PDF | Request permission
Abstract:
The ${v_1}$-periodic homotopy groups $v_1^{ - 1}{\pi _ {\ast } }(X;p)$ are computed explicitly for all pairs $(X,p)$, where $X$ is an exceptional Lie group whose integral homology has no $p$-torsion. This yields new lower bounds for $p$-exponents of actual homotopy groups of these spaces. Delicate calculations with the unstable Novikov spectral sequence are required in the proof.References
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- Martin Bendersky, Unstable towers in the odd primary homotopy groups of spheres, Trans. Amer. Math. Soc. 287 (1985), no. 2, 529–542. MR 768724, DOI 10.1090/S0002-9947-1985-0768724-0
- Martin Bendersky, Some calculations in the unstable Adams-Novikov spectral sequence, Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 739–766. MR 602467, DOI 10.2977/prims/1195186928
- Martin Bendersky, The derived functors of the primitives for $\textrm {BP}_\ast (\Omega S^{2n+1})$, Trans. Amer. Math. Soc. 276 (1983), no. 2, 599–619. MR 688964, DOI 10.1090/S0002-9947-1983-0688964-7 —, The ${v_1}$-periodic unstable Novikov spectral sequence, Topology (to appear).
- Martin Bendersky, The BP Hopf invariant, Amer. J. Math. 108 (1986), no. 5, 1037–1058. MR 859769, DOI 10.2307/2374595
- M. Bendersky, E. B. Curtis, and H. R. Miller, The unstable Adams spectral sequence for generalized homology, Topology 17 (1978), no. 3, 229–248. MR 508887, DOI 10.1016/0040-9383(78)90028-9
- Martin Bendersky and Donald M. Davis, $2$-primary $v_1$-periodic homotopy groups of $\textrm {SU}(n)$, Amer. J. Math. 114 (1992), no. 3, 465–494. MR 1165351, DOI 10.2307/2374767
- Martin Bendersky and Donald M. Davis, Unstable BP-homology and desuspensions, Amer. J. Math. 107 (1985), no. 4, 833–852. MR 796905, DOI 10.2307/2374359
- Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961), 216–240 (French). MR 147579, DOI 10.2748/tmj/1178244298
- F. R. Cohen, J. C. Moore, and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. (2) 110 (1979), no. 3, 549–565. MR 554384, DOI 10.2307/1971238
- M. C. Crabb and K. Knapp, The Hurewicz map on stunted complex projective spaces, Amer. J. Math. 110 (1988), no. 5, 783–809. MR 961495, DOI 10.2307/2374693 D. M. Davis, ${v_1}$-periodic homotopy groups of $SU(n)$ at an odd prime, J. London Math. Soc. (to appear).
- Donald M. Davis and Mark Mahowald, Three contributions to the homotopy theory of the exceptional Lie groups $G_2$ and $F_4$, J. Math. Soc. Japan 43 (1991), no. 4, 661–671. MR 1126144, DOI 10.2969/jmsj/04340661
- Donald M. Davis and Mark Mahowald, $v_1$-periodicity in the unstable Adams spectral sequence, Math. Z. 204 (1990), no. 3, 319–339. MR 1107466, DOI 10.1007/BF02570877 —, Some remarks on ${v_1}$-periodic homotopy groups, Proc. Adams Symposium, London Math. Soc. Lecture Notes (to appear).
- I. M. James, On Lie groups and their homotopy groups, Proc. Cambridge Philos. Soc. 55 (1959), 244–247. MR 124051, DOI 10.1017/s030500410003396x
- Albert T. Lundell, A divisibility property for Stirling numbers, J. Number Theory 10 (1978), no. 1, 35–54. MR 460135, DOI 10.1016/0022-314X(78)90005-7
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no. 1, 65–112. MR 662118, DOI 10.2307/2007048
- Haynes R. Miller and Douglas C. Ravenel, Morava stabilizer algebras and the localization of Novikov’s $E_{2}$-term, Duke Math. J. 44 (1977), no. 2, 433–447. MR 458410
- Mamoru Mimura, Goro Nishida, and Hirosi Toda, $\textrm {Mod}\ p$ decomposition of compact Lie groups, Publ. Res. Inst. Math. Sci. 13 (1977/78), no. 3, 627–680. MR 0478187, DOI 10.2977/prims/1195189602
- Mamoru Mimura and Hirosi Toda, Homotopy groups of $\textrm {SU}(3)$, $\textrm {SU}(4)$ and $\textrm {Sp}(2)$, J. Math. Kyoto Univ. 3 (1963/64), 217–250. MR 169242, DOI 10.1215/kjm/1250524818
- Mamoru Mimura and Hirosi Toda, Cohomology operations and homotopy of compact Lie groups. I, Topology 9 (1970), 317–336. MR 266237, DOI 10.1016/0040-9383(70)90056-X
- Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR 860042
- Paul Selick, Moore conjectures, Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986) Lecture Notes in Math., vol. 1318, Springer, Berlin, 1988, pp. 219–227. MR 952582, DOI 10.1007/BFb0077805
- Robert D. Thompson, The $v_1$-periodic homotopy groups of an unstable sphere at odd primes, Trans. Amer. Math. Soc. 319 (1990), no. 2, 535–559. MR 1010890, DOI 10.1090/S0002-9947-1990-1010890-8
- Clarence Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) Lecture Notes in Math., Vol. 418, Springer, Berlin, 1974, pp. 150–157. MR 0383444
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 115-135
- MSC: Primary 57T20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1116310-9
- MathSciNet review: 1116310