Capacitability theorem in measurable gambling theory
HTML articles powered by AMS MathViewer
- by A. Maitra, R. Purves and W. Sudderth
- Trans. Amer. Math. Soc. 333 (1992), 221-249
- DOI: https://doi.org/10.1090/S0002-9947-1992-1140918-8
- PDF | Request permission
Abstract:
A player in a measurable gambling house $\Gamma$ defined on a Polish state space $X$ has available, for each $x \in X$, the collection $\Sigma (x)$ of possible distributions $\sigma$ for the stochastic process ${x_1},{x_2}, \ldots$ of future states. If the object is to control the process so that it will lie in an analytic subset $A$ of $H = X \times X \times \cdots$, then the player’s optimal reward is \[ M(A)(x) = \sup \{ \sigma (A):\sigma \in \Sigma (x)\}.\] The operator $M( \bullet )(x)$ is shown to be regular in the sense that \[ M(A)(x) = \inf M(\{ \tau < \infty \} )(x),\] where the infimum is over Borel stopping times $\tau$ such that $A \subseteq \{ \tau < \infty \}$. A consequence of this regularity property is that the value of $M(A)(x)$ is unchanged if, as in the gambling theory of Dubins and Savage, the player is allowed to use nonmeasurable strategies. This last result is seen to hold for bounded, Borel measurable payoff functions including that of Dubins and Savage.References
- Dimitri P. Bertsekas and Steven E. Shreve, Stochastic optimal control, Mathematics in Science and Engineering, vol. 139, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. The discrete time case. MR 511544 G. Choquet, Lectures on analysis, Vol. 1, Integration and Topological Vector Spaces, Benjamin, New York and Amsterdam, 1969.
- C. Dellacherie, Quelques résultats sur les maisons de jeux analytiques, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 222–229 (French). MR 889480, DOI 10.1007/BFb0075851
- Lester E. Dubins and Leonard J. Savage, Inequalities for stochastic processes (how to gamble if you must), Dover Publications, Inc., New York, 1976. Corrected republication of the 1965 edition. MR 0410875
- L. Dubins, A. Maitra, R. Purves, and W. Sudderth, Measurable, nonleavable gambling problems, Israel J. Math. 67 (1989), no. 3, 257–271. MR 1029901, DOI 10.1007/BF02764945
- Alexander S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337–384. MR 369072, DOI 10.1016/0003-4843(73)90012-0
- A. Louveau, Recursivity and compactness, Higher set theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1977) Lecture Notes in Math., vol. 669, Springer, Berlin, 1978, pp. 303–337. MR 520192 —, Ensembles analytiques et boreliens dans les espaces produits, Astérisque 78 (1980), 1-84.
- Alain Louveau, Recursivity and capacity theory, Recursion theory (Ithaca, N.Y., 1982) Proc. Sympos. Pure Math., vol. 42, Amer. Math. Soc., Providence, RI, 1985, pp. 285–301. MR 791064, DOI 10.1090/pspum/042/791064
- Ashok Maitra, Victor Pestien, and S. Ramakrishnan, Domination by Borel stopping times and some separation properties, Fund. Math. 135 (1990), no. 3, 189–201. MR 1077510, DOI 10.4064/fm-135-3-189-201
- A. Maitra, R. Purves, and W. Sudderth, Leavable gambling problems with unbounded utilities, Trans. Amer. Math. Soc. 320 (1990), no. 2, 543–567. MR 989581, DOI 10.1090/S0002-9947-1990-0989581-5
- A. Maitra, R. Purves, and W. Sudderth, A Borel measurable version of König’s lemma for random paths, Ann. Probab. 19 (1991), no. 1, 423–451. MR 1085346, DOI 10.1214/aop/1176990554 —, Regularity of the optimal reward operator, University of Minnesota School of Statistics, Tech. Report No. 534, 1989.
- Michael G. Monticino, The adequacy of universal strategies in analytic gambling problems, Math. Oper. Res. 16 (1991), no. 1, 21–41. MR 1106788, DOI 10.1287/moor.16.1.21
- Yiannis N. Moschovakis, Descriptive set theory, Studies in Logic and the Foundations of Mathematics, vol. 100, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 561709
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684 R. Purves and W. Sudderth, Some finitely additive probability, University of Minnesota School of Statistics, Tech. Report No. 220, 1973.
- Roger A. Purves and William D. Sudderth, Some finitely additive probability, Ann. Probability 4 (1976), no. 2, 259–276. MR 402888, DOI 10.1214/aop/1176996133
- Roger A. Purves and William D. Sudderth, How to stay in a set or König’s lemma for random paths, Israel J. Math. 43 (1982), no. 2, 139–153. MR 689973, DOI 10.1007/BF02761725
- Roger A. Purves and William D. Sudderth, Finitely additive zero-one laws, Sankhyā Ser. A 45 (1983), no. 1, 32–37. MR 749351
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
- Ralph E. Strauch, Measurable gambling houses, Trans. Amer. Math. Soc. 126 (1967), 64–72. MR 205352, DOI 10.1090/S0002-9947-1967-0205352-9
- William D. Sudderth, On the existence of good stationary strategies, Trans. Amer. Math. Soc. 135 (1969), 399–414. MR 233595, DOI 10.1090/S0002-9947-1969-0233595-9
- William D. Sudderth, On measurable gambling problems, Ann. Math. Statist. 42 (1971), 260–269. MR 282404, DOI 10.1214/aoms/1177693510
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 221-249
- MSC: Primary 60G40; Secondary 90D60, 93E20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1140918-8
- MathSciNet review: 1140918