The index of a Brauer class on a Brauer-Severi variety
HTML articles powered by AMS MathViewer
- by Aidan Schofield and Michel Van den Bergh
- Trans. Amer. Math. Soc. 333 (1992), 729-739
- DOI: https://doi.org/10.1090/S0002-9947-1992-1061778-X
- PDF | Request permission
Abstract:
Let $D$ and $E$ be central division algebras over $k$; let $K$ be the generic splitting field of $E$; we show that the index of $D{ \otimes _k}K$ is the minimum of the indices of $D \otimes {E^{ \otimes i}}$ as $i$ varies. We use this to calculate the index of $D$ under related central extensions and to construct division algebras with special properties.References
- M. Artin, Brauer-Severi varieties, Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981), Lecture Notes in Math., vol. 917, Springer, Berlin-New York, 1982, pp. 194–210. MR 657430
- Altha Blanchet, Function fields of generalized Brauer-Severi varieties, Comm. Algebra 19 (1991), no. 1, 97–118. MR 1092553, DOI 10.1080/00927879108824131
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Stephen Lichtenbaum, The period-index problem for elliptic curves, Amer. J. Math. 90 (1968), 1209–1223. MR 237506, DOI 10.2307/2373297
- James S. Milne, Étale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- Daniel Quillen, Higher algebraic $K$-theory. I, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin, 1973, pp. 85–147. MR 0338129 A. Schofield and M. Van den Bergh, Division algebra coproducts of index $n$, Trans. Amer. Math. Soc. (to appear).
- J.-P. Tignol and A. R. Wadsworth, Totally ramified valuations on finite-dimensional division algebras, Trans. Amer. Math. Soc. 302 (1987), no. 1, 223–250. MR 887507, DOI 10.1090/S0002-9947-1987-0887507-6
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 729-739
- MSC: Primary 12E15; Secondary 14M99, 16E20, 16K40
- DOI: https://doi.org/10.1090/S0002-9947-1992-1061778-X
- MathSciNet review: 1061778