A spectral sequence for pseudogroups on $\textbf {R}$
HTML articles powered by AMS MathViewer
- by Solomon M. Jekel
- Trans. Amer. Math. Soc. 333 (1992), 741-749
- DOI: https://doi.org/10.1090/S0002-9947-1992-1066445-4
- PDF | Request permission
Abstract:
Consider a pseudogroup $P$ of local homeomorphisms of $\mathbb {R}$ satisfying the following property: given points ${x_0} < \cdots < {x_p}$ and ${y_0} < \cdots < {y_p}$ in $\mathbb {R}$ , there is an element of $P$, with domain an interval containing $[{x_0},{x_p}]$, taking each ${x_i}$ to ${y_i}$. The pseudogroup ${P^r}$ of local ${C^r}$ homeomorphisms, $0 \leq r \leq \infty$ , is of this type as is the pseudogroup ${P^\omega }$ of local real-analytic homeomorphisms. Let $\Gamma$ be the topological groupoid of germs of elements of $P$. We construct a spectral sequence which involves the homology of a sequence of discrete groups $\{ {G_p}\}$. Consider the set $\{ f \in P|f(i) = i,i = 0,1, \ldots ,p\}$,; define $f\sim g$ if $f$ and $g$ agree on a neighborhood of $[0,p] \subset \mathbb {R}$. The equivalence classes under composition form the group ${G_p}$. Theorem: There is a spectral sequence with $E_{p,q}^1 = {H_q}(B{G_p})$ which converges to ${H_{p + q}}(B\Gamma )$. Our spectral sequence can be considered to be a version which covers the realanalytic case of some well-known theorems of J. Mather and G. Segal. The article includes some observations about how the spectral sequence applies to $B\Gamma _1^\omega$. Further applications will appear separately.References
- D. B. A. Epstein, Commutators of $C^{\infty }$-diffeomorphisms. Appendix to: âA curious remark concerning the geometric transfer mapâ by John N. Mather [Comment. Math. Helv. 59 (1984), no. 1, 86â110; MR0743944 (86c:58017)], Comment. Math. Helv. 59 (1984), no. 1, 111â122. MR 743945, DOI 10.1007/BF02566339
- A. Haefliger, Feuilletages sur les variĂ©tĂ©s ouvertes, Topology 9 (1970), 183â194 (French). MR 263104, DOI 10.1016/0040-9383(70)90040-6
- AndrĂ© Haefliger, Homotopy and integrability, ManifoldsâAmsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 133â163. MR 0285027
- Philip J. Higgins, Notes on categories and groupoids, Van Nostrand Rienhold Mathematical Studies, No. 32, Van Nostrand Reinhold Co., London-New York-Melbourne, 1971. MR 0327946
- Solomon M. Jekel, On the second homology group of the discrete group of diffeomorphisms of the circle, J. Pure Appl. Algebra 59 (1989), no. 3, 255â264. MR 1009682, DOI 10.1016/0022-4049(89)90095-9 â, Pseudogroups and homology, Preprint.
- Emmanuel Dror Farjoun, Solomon M. Jekel, and Alexander I. Suciu, Homology of jet groups, J. Pure Appl. Algebra 102 (1995), no. 1, 17â24. MR 1350206, DOI 10.1016/0022-4049(95)00055-2 â, Real analytic $\Gamma$-structures with one leaf on the torus, Preprint. â, Commutators of real analytic diffeomorphisms of the interval (in preparation).
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879, DOI 10.1007/978-3-642-62029-4
- John N. Mather, The vanishing of the homology of certain groups of homeomorphisms, Topology 10 (1971), 297â298. MR 288777, DOI 10.1016/0040-9383(71)90022-X
- John N. Mather, Integrability in codimension $1$, Comment. Math. Helv. 48 (1973), 195â233. MR 356085, DOI 10.1007/BF02566122
- John N. Mather, Commutators of diffeomorphisms, Comment. Math. Helv. 49 (1974), 512â528. MR 356129, DOI 10.1007/BF02566746
- John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357â362. MR 84138, DOI 10.2307/1969967
- D. G. Quillen, Spectral sequences of a double semi-simplicial group, Topology 5 (1966), 155â157. MR 195097, DOI 10.1016/0040-9383(66)90016-4
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Ătudes Sci. Publ. Math. 34 (1968), 105â112. MR 232393, DOI 10.1007/BF02684591
- Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293â312. MR 353298, DOI 10.1016/0040-9383(74)90022-6
- Graeme Segal, Classifying spaces related to foliations, Topology 17 (1978), no. 4, 367â382. MR 516216, DOI 10.1016/0040-9383(78)90004-6
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112 J. Stasheff, Classification via $B{\Gamma _q}$, Lecture Notes in Math., vol. 299, Springer-Verlag, Berlin and New York, 1972, pp. 86-94.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 741-749
- MSC: Primary 58H10; Secondary 57R32
- DOI: https://doi.org/10.1090/S0002-9947-1992-1066445-4
- MathSciNet review: 1066445