Equivariant cohomology and lower bounds for chromatic numbers
HTML articles powered by AMS MathViewer
- by Igor Kříž
- Trans. Amer. Math. Soc. 333 (1992), 567-577
- DOI: https://doi.org/10.1090/S0002-9947-1992-1081939-3
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 352 (2000), 1951-1952.
Abstract:
We introduce a general topological method for obtaining a lower bound of the chromatic number of an $n$-graph. We present numerical lower bounds for intersection $n$-graphs.References
- N. Alon, P. Frankl, and L. Lovász, The chromatic number of Kneser hypergraphs, Trans. Amer. Math. Soc. 298 (1986), no. 1, 359–370. MR 857448, DOI 10.1090/S0002-9947-1986-0857448-8
- Glen E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin-New York, 1967. MR 0214062, DOI 10.1007/BFb0082690
- Paul Erdős, Problems and results in combinatorial analysis, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973) Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976, pp. 3–17 (English, with Italian summary). MR 0465878 M. Kneser, Aufgabe 300, Jber. Deutsch. Math. Verein 58 (1955).
- L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978), no. 3, 319–324. MR 514625, DOI 10.1016/0097-3165(78)90022-5
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 567-577
- MSC: Primary 05C15; Secondary 05C65, 55N91, 55T99, 55U99
- DOI: https://doi.org/10.1090/S0002-9947-1992-1081939-3
- MathSciNet review: 1081939