The set of all iterates is nowhere dense in $C([0,1],[0,1])$
HTML articles powered by AMS MathViewer
- by A. M. Blokh
- Trans. Amer. Math. Soc. 333 (1992), 787-798
- DOI: https://doi.org/10.1090/S0002-9947-1992-1153009-7
- PDF | Request permission
Abstract:
We prove that if a mixing map $f:[0,1] \to [0,1]$ belongs to the ${C^0}$-closure of the set of iterates and $f(0) \ne 0$, $f(1) \ne 1$ then $f$ is an iterate itself. Together with some one-dimensional techniques it implies that the set of all iterates is nowhere dense in $C([0,1],[0,1])$ giving the final answer to the question of A. Bruckner, P. Humke and M. Laczkovich.References
- S. J. Agronsky, A. M. Bruckner, and M. Laczkovich, Dynamics of typical continuous functions, J. London Math. Soc. (2) 40 (1989), no. 2, 227–243. MR 1044271, DOI 10.1112/jlms/s2-40.2.227
- Louis Block and Ethan M. Coven, Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc. 300 (1987), no. 1, 297–306. MR 871677, DOI 10.1090/S0002-9947-1987-0871677-X
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk 37 (1982), no. 2(224), 189–190 (Russian). MR 650765 —, The "spectral" decomposition for one-dimensional maps, Inst. for Math. Sci., SUNY at Stony Brook, Preprint #1991/14, September 1991; Dynamics Reported (to appear).
- Paul D. Humke and Miklós Laczkovich, Approximations of continuous functions by squares, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 361–366. MR 1062763, DOI 10.1017/S0143385700005599
- Paul D. Humke and M. Laczkovich, The Borel structure of iterates of continuous functions, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 3, 483–494. MR 1015490, DOI 10.1017/S0013091500004727
- K. Simon, Typical continuous functions are not iterates, Acta Math. Hungar. 55 (1990), no. 1-2, 133–134. MR 1077067, DOI 10.1007/BF01951395
- Károly Simon, The set of second iterates is nowhere dense in $C$, Proc. Amer. Math. Soc. 111 (1991), no. 4, 1141–1150. MR 1033961, DOI 10.1090/S0002-9939-1991-1033961-5
- K. Simon, The iterates are not dense in $C$, Math. Pannon. 2 (1991), no. 1, 71–76. MR 1119725
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 333 (1992), 787-798
- MSC: Primary 26A18; Secondary 58F08
- DOI: https://doi.org/10.1090/S0002-9947-1992-1153009-7
- MathSciNet review: 1153009