Strong Tutte functions of matroids and graphs
HTML articles powered by AMS MathViewer
- by Thomas Zaslavsky
- Trans. Amer. Math. Soc. 334 (1992), 317-347
- DOI: https://doi.org/10.1090/S0002-9947-1992-1080738-6
- PDF | Request permission
Abstract:
A strong Tutte function of matroids is a function of finite matroids which satisfies $F({M_1} \oplus {M_2}) = F({M_1})F({M_2})$ and $F(M) = {a_e}F(M\backslash e) + {b_e}F(M/e)$ for $e$ not a loop or coloop of $M$, where ${a_e}$, ${b_e}$ are scalar parameters depending only on $e$. We classify strong Tutte functions of all matroids into seven types, generalizing Brylawski’s classification of Tutte-Grothendieck invariants. One type is, like Tutte-Grothendieck invariants, an evaluation of a rank polynomial; all types are given by a Tutte polynomial. The classification remains valid if the domain is any minor-closed class of matroids containing all three-point matroids. Similar classifications hold for strong Tutte functions of colored matroids, where the parameters depend on the color of $e$, and for strong Tutte functions of graphs and edge-colored graphs whose values do not depend on the attachments of loops. The latter classification implies new characterizations of Kauffman’s bracket polynomials of signed graphs and link diagrams.References
- Thomas H. Brylawski, A decomposition for combinatorial geometries, Trans. Amer. Math. Soc. 171 (1972), 235–282. MR 309764, DOI 10.1090/S0002-9947-1972-0309764-6
- Henry H. Crapo, The Tutte polynomial, Aequationes Math. 3 (1969), 211–229. MR 262095, DOI 10.1007/BF01817442
- C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model. I. Introduction and relation to other models, Physica 57 (1972), 536–564. MR 359655 Louis H. Kauffman, Signed graphs, Abstracts Amer. Math. Soc. 7 (1986), 307, Abstract 828-57-12.
- Louis H. Kauffman, New invariants in the theory of knots, Amer. Math. Monthly 95 (1988), no. 3, 195–242. MR 935433, DOI 10.2307/2323625
- Louis H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989), no. 1-2, 105–127. Combinatorics and complexity (Chicago, IL, 1987). MR 1031266, DOI 10.1016/0166-218X(89)90049-8
- Kunio Murasugi, On invariants of graphs with applications to knot theory, Trans. Amer. Math. Soc. 314 (1989), no. 1, 1–49. MR 930077, DOI 10.1090/S0002-9947-1989-0930077-6
- James Oxley, Graphs and series-parallel networks, Theory of matroids, Encyclopedia Math. Appl., vol. 26, Cambridge Univ. Press, Cambridge, 1986, pp. 97–126. MR 849395, DOI 10.1017/CBO9780511629563.009
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- Lorenzo Traldi, A dichromatic polynomial for weighted graphs and link polynomials, Proc. Amer. Math. Soc. 106 (1989), no. 1, 279–286. MR 955462, DOI 10.1090/S0002-9939-1989-0955462-3
- W. T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc. 43 (1947), 26–40. MR 18406, DOI 10.1017/s0305004100023173
- W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80–91. MR 61366, DOI 10.4153/cjm-1954-010-9
- Neil White (ed.), Theory of matroids, Encyclopedia of Mathematics and its Applications, vol. 26, Cambridge University Press, Cambridge, 1986. MR 849389, DOI 10.1017/CBO9780511629563
- Hassler Whitney, 2-Isomorphic Graphs, Amer. J. Math. 55 (1933), no. 1-4, 245–254. MR 1506961, DOI 10.2307/2371127
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 317-347
- MSC: Primary 05B35; Secondary 05C99, 57M25
- DOI: https://doi.org/10.1090/S0002-9947-1992-1080738-6
- MathSciNet review: 1080738