Estimates of the Caccioppoli-Schauder type in weighted function spaces
HTML articles powered by AMS MathViewer
- by Giovanni Maria Troianiello
- Trans. Amer. Math. Soc. 334 (1992), 551-573
- DOI: https://doi.org/10.1090/S0002-9947-1992-1049865-3
- PDF | Request permission
Abstract:
We deal with imbeddings of certain weighted function spaces as well as with the corresponding norm estimates for solutions to second order elliptic problems. We redemonstrate some results of Gilbarg and Hörmander by a technique, entirely different from theirs, which enables us to cover a range of parameters excluded by them.References
- P. Bolley, J. Camus, and G. Métivier, Estimations de Schauder et régularité höldérienne pour une classe de problèmes aux limites singuliers, Comm. Partial Differential Equations 11 (1986), no. 11, 1135–1203 (French). MR 855524, DOI 10.1080/03605308608820460
- S. Campanato, Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 175–188 (Italian). MR 156188 —, Equazioni ellittiche del secondo ordine e spazi ${L^{2,\lambda }}$, Ann. Mat. Pura Appl. 69 (1965), 321-382.
- Sergio Campanato, Su un teorema di interpolazione di G. Stampacchia, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 649–652 (Italian). MR 209864
- Sergio Campanato and Guido Stampacchia, Sulle maggiorazioni in $L^{p}$ nella teoria delle equazioni ellittiche, Boll. Un. Mat. Ital. (3) 20 (1965), 393–399 (Italian, with English summary). MR 0192169
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- David Gilbarg and Lars Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal. 74 (1980), no. 4, 297–318. MR 588031, DOI 10.1007/BF00249677
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- Gary M. Lieberman, Intermediate Schauder estimates for oblique derivative problems, Arch. Rational Mech. Anal. 93 (1986), no. 2, 129–134. MR 823115, DOI 10.1007/BF00279956 J. Nečas, Les méthodes directs en théorie des équations elliptiques, Masson, Paris, 1967.
- Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
- Giovanni Maria Troianiello, Elliptic differential equations and obstacle problems, The University Series in Mathematics, Plenum Press, New York, 1987. MR 1094820, DOI 10.1007/978-1-4899-3614-1 —, A class of weighted function spaces and intermediate Caccioppoli-Schauder estimates, Journées Équations aux Dérivées Partielles, St.-Jean-de-Monts, 1988.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 551-573
- MSC: Primary 35B45; Secondary 35J25, 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1992-1049865-3
- MathSciNet review: 1049865