Cohomology of the symplectic group $\textrm {Sp}_ 4(\textbf {Z})$. I. The odd torsion case
HTML articles powered by AMS MathViewer
- by Alan Brownstein and Ronnie Lee
- Trans. Amer. Math. Soc. 334 (1992), 575-596
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055567-X
- PDF | Request permission
Abstract:
Let ${h_2}$ be the degree two Siegel space and $Sp(4,\mathbb {Z})$ the symplectic group. The quotient $Sp(4,\mathbb {Z})\backslash {h_2}$ can be interpreted as the moduli space of stable Riemann surfaces of genus $2$. This moduli space can be decomposed into two pieces corresponding to the moduli of degenerate and nondegenerate surfaces of genus $2$. The decomposition leads to a Mayer-Vietoris sequence in cohomology relating the cohomology of $Sp(4,\mathbb {Z})$ to the cohomology of the genus two mapping class group $\Gamma _2^0$. Using this tool, the $3$- and $5$-primary pieces of the integral cohomology of $Sp(4,\mathbb {Z})$ are computed.References
- William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044
- Avner Ash, Cohomology of congruence subgroups $\textrm {SL}(n,\,\textbf {Z})$, Math. Ann. 249 (1980), no. 1, 55–73. MR 575448, DOI 10.1007/BF01387080
- D. J. Benson and F. R. Cohen, Mapping class groups of low genus and their cohomology, Mem. Amer. Math. Soc. 90 (1991), no. 443, iv+104. MR 1052554, DOI 10.1090/memo/0443
- P. Bergau and J. Mennicke, Über topologische Abbildungen der Brezelfläche vom Geschlecht $2$, Math. Z. 74 (1960), 414–435 (German). MR 151979, DOI 10.1007/BF01180498
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281 C.-F. Bödigheimer, F. R. Cohen, and M. Peim, Mapping class groups and function spaces (to appear). A. B. Brownstein, Homology of Hilbert modular groups, Thesis, University of Michigan, 1987.
- Ruth Charney and Ronnie Lee, Moduli space of stable curves from a homotopy viewpoint, J. Differential Geom. 20 (1984), no. 1, 185–235. MR 772131 F. R. Cohen, On the mapping class groups for a punctured sphere and a surface of genus $2$, Preprint, University of Rochester, 1989.
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- William L. Hoyt, On products and algebraic families of jacobian varieties, Ann. of Math. (2) 77 (1963), 415–423. MR 150145, DOI 10.2307/1970125
- Erhard Gottschling, Über die Fixpunkte der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 111–149 (German). MR 123026, DOI 10.1007/BF01342975
- Erhard Gottschling, Über die Fixpunktuntergruppen der Siegelschen Modulgruppe, Math. Ann. 143 (1961), 399–430 (German). MR 124407, DOI 10.1007/BF01470754
- Ronnie Lee and R. H. Szczarba, On the torsion in $K_{4}(\textbf {Z})$ and $K_{5}(\textbf {Z})$, Duke Math. J. 45 (1978), no. 1, 101–129. MR 491893
- Ronnie Lee and Steven H. Weintraub, Cohomology of $\textrm {Sp}_4(\textbf {Z})$ and related groups and spaces, Topology 24 (1985), no. 4, 391–410. MR 816521, DOI 10.1016/0040-9383(85)90011-4 E. Mendoza, Cohomology of $PG{L_2}$ over imaginary quadratic number fields, Bonner Math. Schriften, No. 128, Bonn, 1980.
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
- David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR 717614
- Yukihiko Namikawa, On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform, Nagoya Math. J. 52 (1973), 197–259. MR 337981, DOI 10.1017/S002776300001597X
- Joachim Schwermer and Karen Vogtmann, The integral homology of $\textrm {SL}_{2}$ and $\textrm {PSL}_{2}$ of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR 728453, DOI 10.1007/BF02564653
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 575-596
- MSC: Primary 11F75; Secondary 11F46, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055567-X
- MathSciNet review: 1055567