## Cohomology of the symplectic group $\textrm {Sp}_ 4(\textbf {Z})$. I. The odd torsion case

HTML articles powered by AMS MathViewer

- by Alan Brownstein and Ronnie Lee PDF
- Trans. Amer. Math. Soc.
**334**(1992), 575-596 Request permission

## Abstract:

Let ${h_2}$ be the degree two Siegel space and $Sp(4,\mathbb {Z})$ the symplectic group. The quotient $Sp(4,\mathbb {Z})\backslash {h_2}$ can be interpreted as the moduli space of stable Riemann surfaces of genus $2$. This moduli space can be decomposed into two pieces corresponding to the moduli of degenerate and nondegenerate surfaces of genus $2$. The decomposition leads to a Mayer-Vietoris sequence in cohomology relating the cohomology of $Sp(4,\mathbb {Z})$ to the cohomology of the genus two mapping class group $\Gamma _2^0$. Using this tool, the $3$- and $5$-primary pieces of the integral cohomology of $Sp(4,\mathbb {Z})$ are computed.## References

- William Abikoff,
*The real analytic theory of Teichmüller space*, Lecture Notes in Mathematics, vol. 820, Springer, Berlin, 1980. MR**590044** - Avner Ash,
*Cohomology of congruence subgroups $\textrm {SL}(n,\,\textbf {Z})$*, Math. Ann.**249**(1980), no. 1, 55–73. MR**575448**, DOI 10.1007/BF01387080 - D. J. Benson and F. R. Cohen,
*Mapping class groups of low genus and their cohomology*, Mem. Amer. Math. Soc.**90**(1991), no. 443, iv+104. MR**1052554**, DOI 10.1090/memo/0443 - P. Bergau and J. Mennicke,
*Über topologische Abbildungen der Brezelfläche vom Geschlecht $2$*, Math. Z.**74**(1960), 414–435 (German). MR**151979**, DOI 10.1007/BF01180498 - Joan S. Birman,
*Braids, links, and mapping class groups*, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR**0375281**
C.-F. Bödigheimer, F. R. Cohen, and M. Peim, - Ruth Charney and Ronnie Lee,
*Moduli space of stable curves from a homotopy viewpoint*, J. Differential Geom.**20**(1984), no. 1, 185–235. MR**772131**
F. R. Cohen, - John L. Harer,
*Stability of the homology of the mapping class groups of orientable surfaces*, Ann. of Math. (2)**121**(1985), no. 2, 215–249. MR**786348**, DOI 10.2307/1971172 - William L. Hoyt,
*On products and algebraic families of jacobian varieties*, Ann. of Math. (2)**77**(1963), 415–423. MR**150145**, DOI 10.2307/1970125 - Erhard Gottschling,
*Über die Fixpunkte der Siegelschen Modulgruppe*, Math. Ann.**143**(1961), 111–149 (German). MR**123026**, DOI 10.1007/BF01342975 - Erhard Gottschling,
*Über die Fixpunktuntergruppen der Siegelschen Modulgruppe*, Math. Ann.**143**(1961), 399–430 (German). MR**124407**, DOI 10.1007/BF01470754 - Ronnie Lee and R. H. Szczarba,
*On the torsion in $K_{4}(\textbf {Z})$ and $K_{5}(\textbf {Z})$*, Duke Math. J.**45**(1978), no. 1, 101–129. MR**491893** - Ronnie Lee and Steven H. Weintraub,
*Cohomology of $\textrm {Sp}_4(\textbf {Z})$ and related groups and spaces*, Topology**24**(1985), no. 4, 391–410. MR**816521**, DOI 10.1016/0040-9383(85)90011-4
E. Mendoza, - John Milnor,
*Introduction to algebraic $K$-theory*, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR**0349811** - David Mumford,
*Towards an enumerative geometry of the moduli space of curves*, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271–328. MR**717614** - Yukihiko Namikawa,
*On the canonical holomorphic map from the moduli space of stable curves to the Igusa monoidal transform*, Nagoya Math. J.**52**(1973), 197–259. MR**337981**, DOI 10.1017/S002776300001597X - Joachim Schwermer and Karen Vogtmann,
*The integral homology of $\textrm {SL}_{2}$ and $\textrm {PSL}_{2}$ of Euclidean imaginary quadratic integers*, Comment. Math. Helv.**58**(1983), no. 4, 573–598. MR**728453**, DOI 10.1007/BF02564653 - Karen Vogtmann,
*Rational homology of Bianchi groups*, Math. Ann.**272**(1985), no. 3, 399–419. MR**799670**, DOI 10.1007/BF01455567

*Mapping class groups and function spaces*(to appear). A. B. Brownstein,

*Homology of Hilbert modular groups*, Thesis, University of Michigan, 1987.

*On the mapping class groups for a punctured sphere and a surface of genus*$2$, Preprint, University of Rochester, 1989.

*Cohomology of*$PG{L_2}$

*over imaginary quadratic number fields*, Bonner Math. Schriften, No. 128, Bonn, 1980.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**334**(1992), 575-596 - MSC: Primary 11F75; Secondary 11F46, 32G15
- DOI: https://doi.org/10.1090/S0002-9947-1992-1055567-X
- MathSciNet review: 1055567