Entropy for canonical shifts
HTML articles powered by AMS MathViewer
- by Marie Choda
- Trans. Amer. Math. Soc. 334 (1992), 827-849
- DOI: https://doi.org/10.1090/S0002-9947-1992-1070349-0
- PDF | Request permission
Abstract:
For a $^{\ast }$-endomorphism $\sigma$ of an injective finite von Neumann algebra $A$ , we investigate the relations among the entropy $H(\sigma )$ for $\sigma$ , the relative entropy $H(A|\sigma (A))$ of $\sigma (A)$ for $A$ , the generalized index $\lambda (A,\sigma (A))$, and the index for subfactors. As an application, we have the following relations for the canonical shift $\Gamma$ for the inclusion $N \subset M$ of type $\text {II}_{1}$ factors with the finite index $[M:N]$, \[ H(A|\Gamma (A)) \leq 2H(\Gamma ) \leq \log \lambda {(A,\Gamma (A))^{ - 1}} = 2\log [M:N],\] where $A$ is the von Neumann algebra generated by the two of the relative commutants of $M$. In the case of that $N \subset M$ has finite depth, then all of them coincide.References
- Marie Choda, Shifts on the hyperfinite $\textrm {II}_1$-factor, J. Operator Theory 17 (1987), no.Β 2, 223β235. MR 887220 β, Entropy for $^{\ast }$ -endomorphisms and relative entropy for subalgebras, J. Operator Theory (to appear). A. Connes and E. Stornier, Entropy for automorphism of ${\text {II}}_1$ von Neumann algebras, Acta Math. 134 (1975), 288-306.
- A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of $C^\ast$ algebras and von Neumann algebras, Comm. Math. Phys. 112 (1987), no.Β 4, 691β719. MR 910587
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799, DOI 10.1007/978-1-4613-9641-3
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no.Β 1, 1β25. MR 696688, DOI 10.1007/BF01389127
- Roberto Longo, Simple injective subfactors, Adv. in Math. 63 (1987), no.Β 2, 152β171. MR 872351, DOI 10.1016/0001-8708(87)90051-X
- R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split $W^{\ast }$-inclusions, Invent. Math. 76 (1984), no.Β 1, 145β155. MR 739630, DOI 10.1007/BF01388497
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp.Β 119β172. MR 996454
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. Γcole Norm. Sup. (4) 19 (1986), no.Β 1, 57β106. MR 860811
- Mihai Pimsner and Sorin Popa, Iterating the basic construction, Trans. Amer. Math. Soc. 310 (1988), no.Β 1, 127β133. MR 965748, DOI 10.1090/S0002-9947-1988-0965748-8
- Sorin Popa, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), no.Β 1, 27β48. MR 720738, DOI 10.1016/0001-8708(83)90033-6 β, Classification of subfactors: The reduction to commuting squares, Preprint.
- Robert T. Powers, An index theory for semigroups of $^*$-endomorphisms of ${\scr B}({\scr H})$ and type $\textrm {II}_1$ factors, Canad. J. Math. 40 (1988), no.Β 1, 86β114. MR 928215, DOI 10.4153/CJM-1988-004-3
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Hisaharu Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J. (2) 6 (1954), 177β181. MR 68751, DOI 10.2748/tmj/1178245177 H. Wenzl, Representation of Hecke algebras and subfactors, Thesis, Univ. of Pennsylvania, 1985.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 827-849
- MSC: Primary 46L55; Secondary 46L35
- DOI: https://doi.org/10.1090/S0002-9947-1992-1070349-0
- MathSciNet review: 1070349