Entropy for canonical shifts
Author:
Marie Choda
Journal:
Trans. Amer. Math. Soc. 334 (1992), 827-849
MSC:
Primary 46L55; Secondary 46L35
DOI:
https://doi.org/10.1090/S0002-9947-1992-1070349-0
MathSciNet review:
1070349
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a $^{\ast }$-endomorphism $\sigma$ of an injective finite von Neumann algebra $A$ , we investigate the relations among the entropy $H(\sigma )$ for $\sigma$ , the relative entropy $H(A|\sigma (A))$ of $\sigma (A)$ for $A$ , the generalized index $\lambda (A,\sigma (A))$, and the index for subfactors. As an application, we have the following relations for the canonical shift $\Gamma$ for the inclusion $N \subset M$ of type $\text {II}_{1}$ factors with the finite index $[M:N]$, \[ H(A|\Gamma (A)) \leq 2H(\Gamma ) \leq \log \lambda {(A,\Gamma (A))^{ - 1}} = 2\log [M:N],\] where $A$ is the von Neumann algebra generated by the two of the relative commutants of $M$. In the case of that $N \subset M$ has finite depth, then all of them coincide.
- Marie Choda, Shifts on the hyperfinite ${\rm II}_1$-factor, J. Operator Theory 17 (1987), no. 2, 223โ235. MR 887220 ---, Entropy for $^{\ast }$ -endomorphisms and relative entropy for subalgebras, J. Operator Theory (to appear). A. Connes and E. Stornier, Entropy for automorphism of ${\text {II}}_1$ von Neumann algebras, Acta Math. 134 (1975), 288-306.
- A. Connes, H. Narnhofer, and W. Thirring, Dynamical entropy of $C^\ast $ algebras and von Neumann algebras, Comm. Math. Phys. 112 (1987), no. 4, 691โ719. MR 910587
- Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones, Coxeter graphs and towers of algebras, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR 999799
- V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1โ25. MR 696688, DOI https://doi.org/10.1007/BF01389127
- Roberto Longo, Simple injective subfactors, Adv. in Math. 63 (1987), no. 2, 152โ171. MR 872351, DOI https://doi.org/10.1016/0001-8708%2887%2990051-X
- R. Longo, Solution of the factorial Stone-Weierstrass conjecture. An application of the theory of standard split $W^{\ast } $-inclusions, Invent. Math. 76 (1984), no. 1, 145โ155. MR 739630, DOI https://doi.org/10.1007/BF01388497
- Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp. 119โ172. MR 996454
- Mihai Pimsner and Sorin Popa, Entropy and index for subfactors, Ann. Sci. รcole Norm. Sup. (4) 19 (1986), no. 1, 57โ106. MR 860811
- Mihai Pimsner and Sorin Popa, Iterating the basic construction, Trans. Amer. Math. Soc. 310 (1988), no. 1, 127โ133. MR 965748, DOI https://doi.org/10.1090/S0002-9947-1988-0965748-8
- Sorin Popa, Maximal injective subalgebras in factors associated with free groups, Adv. in Math. 50 (1983), no. 1, 27โ48. MR 720738, DOI https://doi.org/10.1016/0001-8708%2883%2990033-6 ---, Classification of subfactors: The reduction to commuting squares, Preprint.
- Robert T. Powers, An index theory for semigroups of $^*$-endomorphisms of ${\scr B}({\scr H})$ and type ${\rm II}_1$ factors, Canad. J. Math. 40 (1988), no. 1, 86โ114. MR 928215, DOI https://doi.org/10.4153/CJM-1988-004-3
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Hisaharu Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J. (2) 6 (1954), 177โ181. MR 68751, DOI https://doi.org/10.2748/tmj/1178245177 H. Wenzl, Representation of Hecke algebras and subfactors, Thesis, Univ. of Pennsylvania, 1985.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L55, 46L35
Retrieve articles in all journals with MSC: 46L55, 46L35
Additional Information
Article copyright:
© Copyright 1992
American Mathematical Society