$H^ p$- and $L^ p$-variants of multiparameter Calderón-Zygmund theory
HTML articles powered by AMS MathViewer
- by Anthony Carbery and Andreas Seeger
- Trans. Amer. Math. Soc. 334 (1992), 719-747
- DOI: https://doi.org/10.1090/S0002-9947-1992-1072104-4
- PDF | Request permission
Abstract:
We consider Calderón-Zygmund operators on product domains. Under certain weak conditions on the kernel a singular integral operator can be proved to be bounded on ${H^p}(\mathbb {R} \times \mathbb {R} \times \cdots \times \mathbb {R}), 0 < p \leq 1$, if its behaviour on ${L^2}$ and on certain scalar-valued and vector-valued rectangle atoms is known. Another result concerns an extension of the authors’ results on ${L^p}$-variants of Calderón-Zygmund theory [1,23] to the product-domain-setting. As an application, one obtains estimates for Fourier multipliers and pseudo-differential operators.References
- Anthony Carbery, Variants of the Calderón-Zygmund theory for $L^p$-spaces, Rev. Mat. Iberoamericana 2 (1986), no. 4, 381–396. MR 913694, DOI 10.4171/RMI/40
- Anthony Carbery and Andreas Seeger, Conditionally convergent series of linear operators on $L^p$-spaces and $L^p$-estimates for pseudodifferential operators, Proc. London Math. Soc. (3) 57 (1988), no. 3, 481–510. MR 960097, DOI 10.1112/plms/s3-57.3.481
- Sun-Yung A. Chang and Robert Fefferman, A continuous version of duality of $H^{1}$ with BMO on the bidisc, Ann. of Math. (2) 112 (1980), no. 1, 179–201. MR 584078, DOI 10.2307/1971324
- Sun-Yung A. Chang and Robert Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), no. 3, 455–468. MR 658542, DOI 10.2307/2374150 R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudodifférentiels, Astérisque 57 (1978).
- Robert Fefferman, Calderón-Zygmund theory for product domains: $H^p$ spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 4, 840–843. MR 828217, DOI 10.1073/pnas.83.4.840
- Robert Fefferman, Harmonic analysis on product spaces, Ann. of Math. (2) 126 (1987), no. 1, 109–130. MR 898053, DOI 10.2307/1971346
- R. Fefferman, A note on a lemma of Zó, Proc. Amer. Math. Soc. 96 (1986), no. 2, 241–246. MR 818452, DOI 10.1090/S0002-9939-1986-0818452-4 R. Fefferman and K. C. Lin, A sharp Marcinkiewicz multiplier theorem, Ann. Institut Fourier (to appear).
- Robert Fefferman and Elias M. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), no. 2, 117–143. MR 664621, DOI 10.1016/S0001-8708(82)80001-7
- R. F. Gundy and E. M. Stein, $H^{p}$ theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 3, 1026–1029. MR 524328, DOI 10.1073/pnas.76.3.1026 L. Hörmander, Estimates for translation invariant operators in ${L^p}$-spaces, Acta Math. 104 (1960), 93-139.
- Carl Herz and Nestor Rivière, Estimates for translation-invariant operators on spaces with mixed norms, Studia Math. 44 (1972), 511–515. MR 342959, DOI 10.4064/sm-44-5-511-515
- Max Jodeit Jr., A note on Fourier multipliers, Proc. Amer. Math. Soc. 27 (1971), 423–424. MR 270072, DOI 10.1090/S0002-9939-1971-0270072-8 J. L. Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana 1 (1985), 55-91.
- Jean-Lin Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc. 96 (1986), no. 4, 593–598. MR 826486, DOI 10.1090/S0002-9939-1986-0826486-9
- Jean-Lin Journé, Two problems of Calderón-Zygmund theory on product-spaces, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 111–132. MR 949001, DOI 10.5802/aif.1125
- Karel de Leeuw, On $L_{p}$ multipliers, Ann. of Math. (2) 81 (1965), 364–379. MR 174937, DOI 10.2307/1970621 H. Lin, Weighted inequalities on product domains, Thesis, Univ. of Chicago, 1987.
- W. Littman, C. McCarthy, and N. Rivière, $L^{p}$-multiplier theorems, Studia Math. 30 (1968), 193–217. MR 231126, DOI 10.4064/sm-30-2-193-217 J. Marschall, Weighted parabolic Triebel spaces of product type, Fourier multipliers and pseudodifferential operators, Preprint.
- Jill Pipher, Journé’s covering lemma and its extension to higher dimensions, Duke Math. J. 53 (1986), no. 3, 683–690. MR 860666, DOI 10.1215/S0012-7094-86-05337-8
- Andreas Seeger, Some inequalities for singular convolution operators in $L^p$-spaces, Trans. Amer. Math. Soc. 308 (1988), no. 1, 259–272. MR 955772, DOI 10.1090/S0002-9947-1988-0955772-3
- Fernando Soria, A note on a Littlewood-Paley inequality for arbitrary intervals in $\textbf {R}^2$, J. London Math. Soc. (2) 36 (1987), no. 1, 137–142. MR 897682, DOI 10.1112/jlms/s2-36.1.137
- Masao Yamazaki, The $L^p$-boundedness of pseudodifferential operators with estimates of parabolic type and product type, J. Math. Soc. Japan 38 (1986), no. 2, 199–225. MR 833198, DOI 10.2969/jmsj/03820199
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 719-747
- MSC: Primary 42B30; Secondary 42B15, 42B20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1072104-4
- MathSciNet review: 1072104