Brauer-Hilbertian fields
HTML articles powered by AMS MathViewer
- by Burton Fein, David J. Saltman and Murray Schacher PDF
- Trans. Amer. Math. Soc. 334 (1992), 915-928 Request permission
Abstract:
Let $F$ be a field of characteristic $p$ ($p = 0$ allowed), and let $F(t)$ be the rational function field in one variable over $F$. We say $F$ is Brauer-Hilbertian if the following holds. For every $\alpha$ in the Brauer group $\operatorname {Br}(F(t))$ of exponent prime to $p$, there are infinitely many specializations $t \to a \in F$ such that the specialization $\bar \alpha \in \operatorname {Br}(F)$ is defined and has exponent equal to that of $\alpha$. We show every global field is Brauer-Hilbertian, and if $K$ is Hilbertian and $F$ is finite separable over $K(t)$, $F$ is Brauer-Hilbertian.References
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956
- P. K. Draxl, Skew fields, London Mathematical Society Lecture Note Series, vol. 81, Cambridge University Press, Cambridge, 1983. MR 696937, DOI 10.1017/CBO9780511661907
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479 R. Elmar, Quadratic forms and the $u$-invariant. III, Conference on Quadratic Forms 1976, Queen’s Papers in Pure and Appl. Math., no. 46, Queen’s Univ., Kingston, Ontario, 1977.
- B. Fein and M. Schacher, Brauer groups of rational function fields over global fields, The Brauer group (Sem., Les Plans-sur-Bex, 1980) Lecture Notes in Math., vol. 844, Springer, Berlin, 1981, pp. 46–74. MR 611865
- Michael D. Fried and Moshe Jarden, Field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 11, Springer-Verlag, Berlin, 1986. MR 868860, DOI 10.1007/978-3-662-07216-5
- Nathan Jacobson, $p$-algebras of exponent $p$, Bull. Amer. Math. Soc. 43 (1937), no. 10, 667–670. MR 1563614, DOI 10.1090/S0002-9904-1937-06621-3
- Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 674652
- David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250–283. MR 648801, DOI 10.1016/0001-8708(82)90036-6
- Andrzej Schinzel, Selected topics on polynomials, University of Michigan Press, Ann Arbor, Mich., 1982. MR 649775
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- J. T. Tate, Global class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 162–203. MR 0220697
- I. I. Voronovich, A local-global principle for algebras over fields of rational functions, Dokl. Akad. Nauk BSSR 31 (1987), no. 10, 877–880, 956 (Russian, with English summary). MR 920915
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 915-928
- MSC: Primary 12E25; Secondary 12G05, 13A20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1075382-0
- MathSciNet review: 1075382