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ANOMALIES ASSOCIATED TO THE POLAR DECOMPOSITION
OF GL(«, C)

STEVEN ROSENBERG

Abstract. Let D be a selfadjoint elliptic differential operator on a hermi-

tian bundle over a compact manifold. For positive D, the variation of the

functional determinant of D under positive definite hermitian gauge transfor-

mations is calculated. This corresponds to computing a gauge anomaly in the

nonunitary directions of the polar decomposition of the frame bundle GL(£).

The variation of the eta invariant for general D is also calculated. If D is

not selfadjoint, the integrand in the heat equation proof of the Atiyah-Singer

Index Theorem is interpreted as an anomaly for D*D . In particular, the gauge

anomaly for semiclassical Yang-Mills theory is computed.

1. Introduction

Let D: Y(EX) -> Y(Ef) be an elliptic differential operator acting on sections

of hermitian bundles E¡ over a compact Riemannian manifold M. If the

E¡ are built canonically from a third bundle E, sections of the frame bundle

(or complex gauge group) GL(2i) of E act on E via conjugation. In various

geometric situations, this action naturally arises within one factor of the polar

decomposition of GL(E) = P(E)U(E) into positive definite hermitian trans?

formations and unitary transformations. For example, in gauge theory the E¡

are bundles of forms with values in Hom(E, E), and sections of U(E) act

on the covariant derivatives d¿ associated to a connection A on E. For the

complex of differential forms with the Laplacian introduced by Witten [13],
E = T*M and the E¡ are the bundles of odd and even forms. In this case

and for conformally covariant operators such as the Dirac operator, the ac-

tion is (roughly) conjugation by positive functions, which form a subbundle

C°°(M)cP(E).
In this paper we will compute anomalies (the variation of the functional de-

terminant) and variations of eta invariants for elliptic operators under the action

of the complex gauge group. This extends work in [9], in which we showed that

the eta invariant n(0) and the functional determinant exp(-£'(0)) of confor-

mally covariant elliptic operators are conformai invariants. In particular, in §§2

and 3, this invariance is extended to deformations of operators D i-> \p1D\p2,

where the y/¡ are commuting endomorphisms in P(E) (Proposition 2.2, 3.1).

Here E = E¡ and D is selfadjoint. We also correct an error in the discussion

of the eta invariant in [9].
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In §2 we also consider the case E f= E¡ and compute the anomaly for the

Laplacian D*D. By using integral kernels for kerD and kerZ>*, the Atiyah-

Singer Index Theorem for D can be easily rewritten as the integral of a certain

density involving both local and nonlocal terms. (If the complex is acyclic, only

local terms appear.) This density is the anomaly in P(E) directions (Theorem

2.10). We consider this result to be an interpretation of the integrand in the "lo-

cal" heat equation approach to the Index Theorem. For example, the anomaly

for the Dirac Laplacian in Cff(M) directions is given by the ^-polynomial as

a differential form, provided there are no harmonic spinors.

These calculations are applied to compute the gauge anomaly for the func-

tional determinants which appear in semiclassical Yang-Mills theory. The anom-

aly for the Faddeev-Papov ghost determinant vanishes for unitary gauge trans-

formations (trivially) or if the base manifold is odd dimensional. Under a

slightly altered action of the gauge group, the anomaly for the semiclassical de-

terminant ratio is a refinement of the characteristic form whose integral is the

index of the basic elliptic complex in Yang-Mills theory. We do not know how

to compute the anomaly in general, but the characteristic form, which gives the

anomaly in C^f(M) directions, is essentially calculated in [1].

We would like to thank Peter Gilkey for several helpful discussions and the

referee for pointing our that work in [11] leads to simpler proofs of some of

our results.

2. Anomalies for elliptic operators and elliptic complexes

Let E be a hermitian vector bundle over an orientable compact Riemannian

manifold M of dimension m and let D: Y(E) —> Y(E) be a strictly positive

selfadjoint elliptic differential operator of order r acting on smooth sections

of E. For example, if B : Y(E) —» Y(F) is a positive elliptic differential op-

erator, we can take D = B*B on Y(E). L2(E) has an orthonormal basis

of D-eigensections {0,} of E with positive eigenvalues k¡■ —> oo. The zeta

functions for D are denned by Ç(s) = Y.n^ñs ancl C(s, x) = Yin^ñs\(t)n(x)\l,

where \</>„\x denotes the norm in the fiber Ex for x £ M. Note that Ç(s) =

JM Ç(s, x)dx . These functions converge for Re(s) » 0 and have a meromor-

phic continuation to all of C with zero a regular value [12]. Whereas £(0, x)

is given by an expression in the jets of the total symbol of D and the metrics

on E and M at x , £'(0) is not the integral of such a local expression. Recall

that exp(-C'(0)) is interpreted as the regularized determinant of D, at least

if D has trivial kernel, since it equals the determinant for finite-dimensional

linear transformations.

In [9] we considered conformally covariant operators; that is, operators as-

sociated to metrics on M which transform via D i-> ew'fDeW2f for some

wx , W2 £ R under a conformai transformation of the metric g i-» e1g for

/: M —y R. In odd dimensions ('(0) was shown to be invariant under such

conformai transformations. Moreover, if p is an acyclic «-dimensional unitary

representation of nx(M) with associated flat bundle Vp and if Çp(s) is the zeta

function for the extension of D to the bundle E ® Vp , then in even dimensions

C'(0) - j¡C'p(0) is a conformai invariant.

These results can be interpreted and extended using the polar decomposi-

tion of the frame bundle of E .  The GL(n, C)-bundle GL(E) of invertible
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bundle maps of E splits into the fiberwise product of bundles P(E), U(E)

corresponding to the polar decomposition GL(« ,C) = P-U of GL(«, C) into

positive definite hermitian transformations and unitary transformations. A sec-

tion of U(E) is a gauge transformation, while multiplication by ewf as above

gives a section of P(E). In this paper a section of GL(is) will be called a gauge

transformation. Let A be a connected smooth (or smooth enough) manifold

of possibly infinite dimension and let y/x, >P2 '■ X —> P(E) be maps as smooth

as possible with [y/x(x), y/2(x)] = 0 in each fiber of E. Define a family of

operators Dp by Dp = ipi(p)Dy/2(p). It is assumed that there exists p £ X

such that y/\(p) = y/2(p) = Id. For example, with A = C°°(M), y/fp) could
be the functions eWiP above, but in general Dp need not be associated to a

metric on M.
Although Dp is not selfadjoint, it has a zeta function f (s) = Çp(s) with all

the nice properties of D's.

Lemma 2.1. The spectrum of Dp acting on L2(E) is contained in R+ and

consists of discrete points of finite multiplicity. The spectrum diverges to infinity

fast enough for Ç(s) to be defined for Re(s) » 0. The zeta function has a

meromorphic continuation to C with zero as a regular value.

Proof. Let X be in the spectrum of Dp . Equivalently, there exist <j>„ £ L2(E)

with \\<j>n\\ = 1 and en —► 0 with \\Dp(f>„ -Xtpn\\ < e« • (II • || is the L2 norm on

Y(E).) Since y/x and y/2 commute, D* = y/x~xy/2Dpy/fxy/x . By considering

the approximate eigenfunctions yixxy/2(pn , we see that X is in the spectrum of

D*. Define error terms fn = Dp<fin - Xtj)n and gn = D*p\pZx yi2<Pn - Xy/X~' y/2tf>„ ■

With respect to the global inner product ( ,  ) on Y(E),

X(<f)„ , y/fly/2<f>„) + (fn , WXXWl4>n) = (Dp(/>n , y/f V2</>„)

= (<pn , D*y/ZXy/2<Pn) = M<t>n , Vx~XV2<&n) + (4>n , gn) ■

Applying Cauchy-Schwarz to the error terms gives

limsupA((/>„, y/x~ly/24>n) = limsupl(0„, <px~x y/2<l>n) ■
n—*oo n—»oo

\(4>n, Wx~1¥2(t>n)I is bounded by Cauchy-Schwarz. Moreover, since y/x and y/2

are simultaneously diagonalizable, WXXW2 is positive definite in each fiber,

so there exists a function c(x) > 0 on M such that |(</>„, y/x~lW2<l>n)\ >

JMc(x)\(f)n(x)\xdx > 0. Thus X £ R. (This paragraph is valid for complete

manifolds provided \p¡ £ L2(Hom(£', E)).)

We now show that A is a discrete eigenvalue. Since the ip¡ are invertible,

Dp is elliptic. By the definition of tj>„ , they and Dp(pn are bounded in the L2

norm, so by Gàrding's inequality the </>„ are bounded in the Sobolev space Hr.

Thus there exists a section tj> with </»„ -» </> in Hr_s for any ô > 0. This

implies that Dp(pn converges to Dp4> in H_s and to X(p in L2. Therefore

Dp4> = X(p in //_¿ and hence by elliptic regularity in C°° .

In fact, the spectrum of Dp is strictly positive: the map œ i-> y/f ' a> takes the

(zero) kernel of D isomorphically to the kernel of Dp , so there is no spectral

flow of eigenvalues from positive to nonnegative.

The argument of [6, p. 46] shows that the eigenvalues grow fast enough so

that the heat operator e~'D? is well defined with a smooth kernel ep(t, x, y)
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roo

f(í) = FfT /    ts-[Yr(e-'D")dt
Jo

decaying exponentially in t. In particular, the multiplicity of each eigenvalue

is finite. The Mellin transform

J_
Y~s)

now defines the zeta function for Re(s) » 0. The construction of the asymp-

totic expansion for ep(t, x, s) as t —> 0 in [6, §1.7] is valid for Dp , since the

essential point is to have the spectrum of the operator contained in an inter-

val [C, oo]. The meromorphic continuation of Ç(s) to C follows from the

existence of the asymptotic expansion.

Remark. For any a, ß £ Y(P(E)), aDß has a well-defined eta function (see

§3). This gives a map from Y(P(E)) x Y(P(E)) to meromorphic functions

on C, and on the connected component of (Id, Id) the eta function is a zeta

function by Lemma 2.1.

We now give two proofs of the invariance of the functional determinant. The

first proof, while longer, gives added information about £(0) (Lemma 2.3). The

second, more direct proof follows from a key lemma in [11].

To begin the first proof, since the spectrum of Dp is unchanged under con-

jugation, we may replace Dp by Qp = y/(p)D, where y/(p) = <pfl(p)Wi(p), to

compute spectral invariants.

Proposition 2.2. Let Dp be defined as above. If the dimension of M is odd, then

£'(0) is independent of p. If p is an n-dimensional acyclic representation of

nx(M), then Ç'(0) - }¡CP(0) is independent of p .

The first step is to show that the integrated local expression £(0) is invariant

for Dp . In contrast, it is shown in §3 that the rç-invariant need not be constant

on connected components of Y(P(E)) x Y(P(E)).

Lemma 2.3. Let Dp be as above. Then Ç(0) is independent of p.

Proof. For v £ TPX, 3Çp(0)(v) denotes the variation of Ç(0) = Çp(0) in the

direction v ; i.e., SÇp(0)(v) = ^| =0Ca(e)(0), where a is a curve in A with

a(0) = p , a'(0) = v . By the Mellin transform, the variation of £(0) at Qp is

given by

1      f°°
ÔÇ(0) = T±-        ts-xÔYr(e-'&)dt

1 (s) Jo

1

"     T(s)j,

1     f°°
/    tsYr(ôy/De-tQ")dt
Jo

i    r00

~mJo '

1 /-OO

(2.4) =~Y(s~)J     fT^ôW~XQpe~tQ^dt

i
tsdtYr(ôy/■y/-xe-'Q")dt

= - s • =f- /    ts~x Yr(Sy/ • y/-xe~tQ')dt
r(s) Jo

with all integrals evaluated at s = 0. The commutativity of the operators within

the trace is standard. There are no boundary terms in the integration by parts
since Yr(ôy/y/~xe~tQi>) has exponential decay at infinity and is 0(t~mlr) as

t —* 0 (see (2.5)). The interchanging of ô and /0°° also follows from (2.5).
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It suffices to show that the last integral has only a simple pole at s = 0.

As usual, the integral from one to infinity is analytic at 5 = 0, so only the

interval from zero to one can contribute a pole. The heat kernel for Qp has

the asymptotic expansion

oo

(2.5) ep(t,x,x)~Y,akWt{k~m)lT

k=0

with ak(x) £ YIom(Ex, Ex). Thus for any C > 0 there exists an integer A » 0

and a function h(s) holomorphic in the half-plane Re(s) > -C such that

/   ts 'Tr¿«/-w  le 'Up)dt=y   —-r-,-\-h(s),
Jo f-f0       s + (k-m)/r w'

which has only a simple pole with k = m at 5 = 0.

Proof I of 2.2. Since Y(s)Ç(s) = [x1 + c + O(s)][C(0)+sC(0) + O(s2)] near 5 = 0,
by the lemma ££'(0) = ¿r(s)£($)|i=o . Repeating the calculation in Lemma 2.3

with the gamma function omitted gives

SC(0) = - [ trx(ôy/-y/-xam)dx = - [ trx(ôy/• y/~xC(0, x))dx
Jm Jm

since am(x) = £(0, x). If m is odd, am(x) = 0, and for all m, am¡p(x) =

n • am(x), where the akp are the coefficients in the heat kernel asymptotics for

the extension of Dp to E <s> Vp .

Proof II o/2.2. We recall the following result of Schwarz [11, Lemma 8].

Lemma 2.6. Let Aq(p) be positive selfadjoint elliptic operators (depending on

a parameter p £ R) acting on sections of hermitian bundles over a compact

manifold M for 0 < q < m, and let P¡f(p) denote projection in L2 onto the

kernel of Aq(p). Pick l4eR. Assume there exist operators Rr(p) and Tr(p)

such that

H    m ¡i   "

j-J2À«- ^{e-tMp) - P,A(P)) = tT(J2^(Kr(p)(e-lT'{p) - Pf(p))).
P 9=0 r=0

Let Cq(s) be the zeta function for Aq(p). If there is an asymptotic expansion of

the form

trx(Rr(p)(e-tT'W - pf(p))) = ¿2b,(Rr(p), Tr(p),x)r> + 0(f)
i

for some finite set of nonnegative integers {/} and some e > 0, and if

= 0(rN)±Yr(Rr(p)(e-'T^-Pf(p)))

as t —► oo for any N £ Z+ , then

d_
dp̂E^-^'^^-E^^oWp),^^)^))

q=0 r=0



754 STEVEN ROSENBERG

The lemma follows easily from the explicit construction of the meromorphic

function fo

LXxx(b,)j

continuation of the zeta function for A = Aq

C(s) = Y(s) ¿   ¡M^plti + J   ts-xYr(e-tA-PA)dt

=-m/2

+ fts-x\Tr(e-íA-PÁ)-   ¿    / trx(b¡))
J° V l=-ml2JM )

We apply this lemma by setting m = 1, Xx = 1, and Aq(p) = Qp . Then
as in (2.4) and (2.5) the hypotheses of the lemma are satisfied with n = 1 ,

Rx = ôyiyi~x, and Tx(p) = Qp . Now the last sentence of the first proof yields

the proposition.

We now turn to general elliptic complexes and an interpretation of a local

version of the Atiyah-Singer Index Theorem as measuring anomalies for certain

determinant ratios (more precisely, for certain differences of £'(0)'s). This work

is motivated by Witten's modification of the Laplacian on forms by a Morse

function / [13]:

A = dd* + d*d ^ e~f de2f d*e~f + efd*e~2f def.

Given an elliptic complex of hermitian bundles over a compact w-dimen-

sional Riemannian manifold M,

(2.7) r(A0)^r(A1)^-'-^^r(Ap)

with p > 1, there is the associated two-step complex

r(A+) -^ r(A_)

formed by setting A+ = 0 A2k , A_ = 0A2t+1, and D = (&(d2k +d2*k_l). By
the heat equation approach to the Index Theorem,

(2.8) index D = dimker D - dim kerD* = /   trx(a^-a~),
Jm

where a+ and a~ are the coefficients of t° in the asymptotic expansion for the

heat kernels of D*D and DD*, respectively. Thus the top dimensional form

trx(a+ - a~) is in the cohomology class of the index polynomial for D. For

elliptic operators naturally associated to the metric on M (e.g. Dirac operator,

signature operator, d -operator, Gauss-Bonnet operator) this form equals the

index polynomial constructed via Chern-Weil theory from the curvature of the

metrics.

(2.8) can be rewritten in a more suggestive form by introducing integral ker-

nels ß±(x) for the orthogonal projections P+ and P_ onto kerZ) and kerD*.

Choose an orthonormal basis {cof} for kerD and ker£>*, respectively, and

set

ß±(x,y) = J2uf(x)®üf(y).
For ß±(x) = ß±(x,x), ¡Mtrxß+(x) = dimkerö and similarly for ß~(x).

trxy5±(x)  are called local Betti numbers in [8, §5], although they cannot be
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computed by information at x alone, whereas trxaf¡,(x) can. In any case, the

Index Theorem can be stated as the integral of "local" expressions:

(2.9) / trx[ß+(x)-ß-(x)-ajn(x) + a-(x)] = 0.
Jm

Let r(GL(A+))nr(GL(A_)) be denoted by r(GL(A±)). An element g£
r(GL(A±)) acts on D by g: D h-> g~xDg. The space r(GL(A±)) always
includes the space of positive functions Cf(M) but in geometric situations is

often larger. For example, for the complex of differential forms (D = d+d*) the

action of Cf(M) extends to an action of r(GL(r*M)) acting on differential
forms. (This is not Witten's action: here

A t-> ef de~2f def + ef de~2f d*ef + ef d*e~2f def + ef d*e-2fd*ef

if g = ef) Similarly, in the gauge theory example below, A± are the bundles

of even and odd forms with values in Hon^is, E) and g ranges over GL(£).

Replacing g~xDg by gw,DgW2 for some w¡ £ R and g £ Cf(M) handles the

case of conformally covariant differential operators such as the Dirac operator.

We want to interpret the integrand in (2.9) as an anomaly, i.e., as a mea-
sure of the variation of a certain "determinant ratio" associated to the elliptic

complex. To be precise, let £(5) be the zeta functions for A = D*D and de-

fine the anomaly for the complex (2.7) to be the gradient vector field of £'(0)

on r(GL(A±)) with respect to the inner product (<fi, y/) = JMtrx((py/*)dx on

r(GL(A±)). The adjoint yi* and trx are computed with respect to the hermi-

tian structure on A_ . This vector field, which is an element of r(Hom(A±)) =
T(Hom(A+, A+)) nT(A_ , A_)), vanishes in unitary directions, so it suffices to

determine the vector field in positive definite hermitian (p.d.h.) directions. The

anomaly A(x) is characterized by the equation

d£'(0)(B)= f trx(AB*)dx
Jm

for all B £ r(Hom(A±)).   In particular, on  C™(M) = exp(C°°(M))  the
anomaly is characterized by

dC'(0)(f)= [ f-trxAdx
Jm

for all f£C°°(M).
To calculate the anomaly, let g(p) be a curve in r(GL(A±)) with g(0) = Id.

Set Dp = g(p)~xDg(p) with associated zeta function Çp(s) for D*DP . Setting

m = 1, Xi = 1, and A = Ax(p) = DpDp in Lemma 2.6, we get

-jj-Tr(e-'A) = -tYr(SAe~lA).

Since
SD*D = ô(g*)D*D + D*ô(g-X)*D + D*ôg~xD + D'Dôg,

we find

4- Trie-'") = t Yr[(Sg* + ôg)(D*De~tD'D - DD*e~tDD' )]
dp

= A Yr[ô(g*g)(e-'D'D -P+- e-'DD" + P_)J.
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Here we have used the identities

Yr(D*Be-'D'D) = Yr(Be~tD'DD*) = Yr(BD*e~tDD')

for any differential operator B , and âg + ôg~x = 0, Sg* +ô(g*)~x = 0, which

follows from differentiating gg~x = Id, g*(g*)~x = Id. The hypothesis of
Lemma 2.6 is now satisfied with n = 2, Rx = R2 = ö(g*g), Tx = D*D, and
T2 = DD*. Thus Lemma 2.6 implies

SC(0) = - Í tTx[S(g*g)(a+ -ß+-a~+ß-)]dx,
Jm

where af and af denote coefficients in the asymptotics of the heat kernels of

D*D and DD*, respectively. If g is a family of p.d.h. transformations passing

through the identity, S(g*g) = 2ög. Since the family g is selfadjoint, so is

dg. Thus the gradient of £'(0) is -2(a+ -a~-ß+-ß~) in p.d.h. directions.

Theorem 2.10. The anomaly for the elliptic complex (2.7) is zero in unitary

directions and is -2(ß+(x)-ß~(x)-a+(x)+a~(x)) is positive definite hermitian

directions. In particular, if the elliptic complex is acyclic and the dimension of

the base manifold is odd, the anomaly vanishes.

Examples, (i) Let 0 : S+ —> S- be the Dirac operator from plus to minus spinors

on an even-dimensional spin manifold. The elliptic anomaly for £'(0) for

the Dirac Laplacian 0*0 in p.d.h. directions is -2(ß+(x) - ß-(x) - â(x)),

where trx à(x) is the ^-polynomial at x . In particular, if the base metric has

positive scalar curvature, the anomaly on Cff(M) is twice the A -polynomial as

a differential form (cf. [8, §5] for a different interpretation of the ^-polynomial

as an anomaly).

(ii) The elliptic anomaly on C^f(M) for the Laplacian on even forms on M

is -2(ß+(x) - ß-(x) - trx E(x)), where trx E(x) is the Euler form on M. If

p is an acyclic unitary representation of nx(M), the anomaly on C^°(M) for

forms with values in the associated flat bundle is -2(dim/?) trx E(x). Thus the

Euler form measures the variation of £'(0) on even forms under our modifica-

tion of Witten's deformation of the Laplacian.

Remark. Theorem 2.10 is similar in spirit to [11, Theorem 1]. However, we

can obtain a bit more information by reproving 2.10 along the lines of the first

proof of Proposition 2.2. In particular, the zeta functions for D*D and DD*

satisfy <5£(0) = 0, i.e., the "dimension anomaly" vanishes in all directions.

We now apply these techniques to semiclassical Yang-Mills theory. Let AP(E)

denote the space of p-forms with values in the bundle Hom(is, E). For a con-

nection A on E with curvature F = FA £ A2(E), the classical Yang-Mills

functional is ¡M \F\2dx . The norm \-\x on A2X(E) is induced by the metrics

on M and E ; if dim M = 4, this norm is just \F A *F\2 . A induces covari-

ant derivatives dpA: AP(E) —> AP+X(E) with d\ (also denoted A) the natural

extension of A to a connection on Hom(£', E). Let stf denote the space of

connection on E, & = Aut(£) the group of (unitary) gauge transformations,

and ^# c srf !"§ the moduli space of self-dual connections.

If <ï>: sí —» R is a gauge invariant function, the partition function for the

quantized theory

Z(<D)= Í <Pexp^- ¡\F\2/h\ dA
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formally reduces to

/     Oexp (- Í \F\2/h\ VdeTÄdv

up to a normalizing constant, where A = A*A = (dA)*dA and dA and dv

are formal measures on sé and sé ¡'S. A is called the Faddeev-Papov ghost

determinant. Assume dim M = 4. Define A2_(E) c A2(E) to be the space

of anti-self-dual forms (i.e., *a> = -of) and set P- to be the projection from

A2 (is) to A2_(E). In the semiclassical approximation one lets S-»0 and

formally applies stationary phase to the last integral to obtain

for some constant k . Here A_ = (P-dA)(P-dA)* and dm denotes the natural

metric on the space of self-dual connections. Since the moduli space is often

finite dimensional, the last integral at least makes sense. For details, see [7; 10,

§7 and Appendix II; 11, §5].
In the discussion above, we have used that at a point [sé] of sé' ¡^ or of Jf

the functional determinants may be computed at any connection A within the

equivalence class [sé] ; in other words, there is no gauge anomaly. For under

the gauge transformation g £ Of, A transforms to g~xAg and A transforms
to g~xAg,so detA = detg~xAg.

In gauge theory one usually mods out only by the unphysical (i.e., length

preserving) unitary gauge transformations. If the definition of a gauge transfor-

mation is relaxed to include all sections of GL(£), anomalies for both deter-

minants may be present. The Laplacian A and A_ are associated to the basic

elliptic complex

A°(E) -±> AX(E) -^L A2_(E)

of [1]. Since one sets the determinant to be zero if the operator has nonzero
kernel, we may assume ker A = ker(P-d\)* = 0. According to Theorem 2.10,

there is no gauge anomaly for the ghost determinant if the dimension of M is

odd. In dimension four, the anomaly for the action A i-> g~xAg for the loga-

rithm of the ratio ^det A/ det A_ is not calculable by our methods. However,

if we define the action of the extended gauge group to be

(2.11) A^g-xAg,        dxA~gdxAg-x

on covariant derivatives, then this action is consistent with the usual action of

the unitary gauge transformations as far as determinant calculations are con-

cerned. Since the roles of g and g~x have been switched in the action on d\ ,

the variation of In det A_ changes sign. Now the anomaly for the determinant

ratio agrees with the anomaly for B = A + (P-d\)* : A°(E) © A2(E) -» AX(E)
in Theorem 2.10, since B*B = A©A_ . By (2.10), under the action (2.11)

Sin v/detA/detA_ = / trx[ô(g*g)(J?(x) - ß'(x))]dx,
Jm

with <y(x) the difference of the zeroth order terms in the asymptotics of the

heat kernels of e~'B'B and e~'BB'   and ß~  the integral kernel for kerß*.
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Up to bundle isomorphism, B is a Dirac operator coupled to the self-dual

connection A [1]. Therefore, if we assume for simplicity that kerß* = 0,

then trxJr(x), the anomaly for the determinant ratio on C^f(M), is the index

polynomial for the coupled Dirac operator computed as a differential form via

Chern-Weil theory. This polynomial as a characteristic class is determined by

the Index Theorem in [1] as follows: let px(E) equal the first Pontrjagin class

of E and let % and t denote the Euler characteristic and the signature of M,

respectively. Then

/ trxS(x)=px(E)-\(dimE)2(x-T).
Jm l

trxJr(x) as a differential form is independent of the bundle isomorphism

above, since the isomorphism cancels in the trace.

Corollary 2.13. Assume that the kernels A, A*, P-d\,and (P-d\)* all vanish.
Under the action (2.11), the gauge anomaly on Cff(M) for the logarithm of the

determinant ratio y'detA/detA- in the semiclassical approximation to Yang-

Mills theory is given by trx J^(x) = px(E)(x) - \(dimE)2(x - t)(x) computed

as a differential form in the curvature of M and the curvature of the self-dual

connection.

It would be interesting to identify J^(x) itself as an endomorphism of Ex .

As an example, let P be a U(n) principal bundle over M and let E he the

vector bundle associated to the adjoint representation of U(n). ker A = 0 in

this case, and ker(P-dA)* = 0 if M's metric has positive scalar curvature [1].

JM <f(x) equals the dimension of the moduli space of self-dual connections if

it is nonempty. If kerB* = 0, the moduli space consists of at most isolated

points. Nevertheless, the index polynomial will be nontrivial in general, so the

determinant ratio has a nontrivial anomaly at each of these points.

3.  i/(0)

We now drop the assumption that D be positive and define eta functions

V(s) = ¿Z,nsSa(^nMn\~s and n(s,x) = Y,nsgn(X„)\Xn\-s\(j)n(x)\2x with the sum

taken over the nonzero spectrum. Let Dp be as in §2. We also drop the as-

sumption that Dp = D for some p. The discussion in [6, p. 46] shows that

e~tDp is well defined with a smooth kernel. Since

1 i°°

"W = f(7JTT)72)i   '"-'"^^e-'^ä,.

the eta function for Dp converges for Re(s) > 0 and has a meromorphic

continuation to C [2].

In this section we will show the invariance of the eta invariant n(0) of Dp

for m + r odd and produce a counterexample to the invariance for m + r even.

For m + r odd, n(0) reduced mod Z is a homotopy invariant for arbitrary

families of differential operators. This follows from [2, Proposition 2.12] and a

parity count for the appropriate asymptotics. For the family of operators Dp ,

the lack of spectral flow implies that n (0) itself is invariant. However, we need

an explicit calculation of the invariance to construct the counterexample. Note

that the methods of [11] used in §2 do not apply to the eta invariant.
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Proposition 3.1. Let Dp be as above. If m + r is odd, then n(0) is independent

of p.
Proof. Since

1 /»OO

we have

- 2nr(Q2pöi/i ■ y-'Q,e-'°})]dt

i r°°

2
+ Y((s+ml w^,r'(^)l

_,ïj72j /°°í(í"1)/2Tr(^- W-'Qpe-^dt
r«5 +

S '»

r((i +

at 5 = 0. The local trace trx(Qpe~'Qp) has an asymptotic expansion

EW(fc_2r_m)/2

i:>0

[6, p. 59; 9], so

*K°> ~ E F((7TT)72) jf /, *-l"W * ̂ ^»^
c-2r-m)/2r

fcT((5+l)/2)70 V —   ^    —

at 5 = 0. Thus

(3.2) ái/(0) = Ti"1/2 / trx(ôy/-y/~xB(x))dx,
Jm

where J?(x) = br+m(x) is the coefficient of k~x/2 in the asymptotics. Since Dp

is a differential operator with real spectrum, a standard parity count shows that
B(x) = 0 if r + m is odd.

The coefficient B(x) is familiar from another context. Separating the integral
in

1 f°°
*<*■*>-fiü+i)72)j[ 'ls"",2<r'<ö"'""s"*

into /0 + J,00 and substituting the asymptotic expression for the local trace into

the first integral, one obtains for fixed A e Z+ ,

1 N 1
^(x) = r((J+i)/2)gMjc)(f+1/2) + (fc~2r"w)/2r+r((j-n)/2)*(f)>

where h(s) is a holomorphic function of 5 . In particular, B(x) is the residue

of the local eta function at 5 = 0.
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It is a deep result of Atiyah-Patodi-Singer [2] and Gilkey [4] that n(0) is
a regular value of the eta function, i.e., the residue JM B(x) of the global eta

function is zero. In contrast, Gilkey has given examples of differential operators

Q with B(xo) ^ 0 for most xo £ M [3]. If y/(p) is multiplication by a

positive function pf for p £ R+ , then / may be chosen so that tr^(f5i//i//-1-)

is arbitrary close to a delta function at x0. Thus the right-hand side of (3.2)

will be nonzero for this family of operators.

In [9] it was claimed that the eta invariant n(0) is an invariant for confor-

mally covariant operators. While the argument was correct if m + r is odd, the

discussion for m + r even must fail because of the example just given. In fact,

the proof of [9, Theorem 3.9] is incorrect, since the operator A#B considered

there fails to be pseudo-differential (see [6, §4.3]).

Professor Gilkey has pointed out that the local residue B(x) does vanish

identically if the family Qp is naturally associated to the metric, i.e., in the

case P is the set of metrics on M. Thus the results in [9] for specific geometric

operators such as the Dirac operator and the conformai Laplacian are correct

with this additional fact.
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