Anomalies associated to the polar decomposition of $\textrm {GL}(n,\textbf {C})$
HTML articles powered by AMS MathViewer
- by Steven Rosenberg
- Trans. Amer. Math. Soc. 334 (1992), 749-760
- DOI: https://doi.org/10.1090/S0002-9947-1992-1075383-2
- PDF | Request permission
Abstract:
Let $D$ be a selfadjoint elliptic differential operator on a hermitian bundle over a compact manifold. For positive $D$, the variation of the functional determinant of $D$ under positive definite hermitian gauge transformations is calculated. This corresponds to computing a gauge anomaly in the nonunitary directions of the polar decomposition of the frame bundle ${\text {GL}}(E)$. The variation of the eta invariant for general $D$ is also calculated. If $D$ is not selfadjoint, the integrand in the heat equation proof of the Atiyah-Singer Index Theorem is interpreted as an anomaly for ${D^{\ast } }D$ . In particular, the gauge anomaly for semiclassical Yang-Mills theory is computed.References
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no.Β 1711, 425β461. MR 506229, DOI 10.1098/rspa.1978.0143
- M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43β69. MR 397797, DOI 10.1017/S0305004100049410
- Howard D. Fegan and Peter Gilkey, Invariants of the heat equation, Pacific J. Math. 117 (1985), no.Β 2, 233β254. MR 779919, DOI 10.2140/pjm.1985.117.233
- Peter B. Gilkey, The residue of the local eta function at the origin, Math. Ann. 240 (1979), no.Β 2, 183β189. MR 524666, DOI 10.1007/BF01364633
- Peter B. Gilkey, The residue of the global $\eta$ function at the origin, Adv. in Math. 40 (1981), no.Β 3, 290β307. MR 624667, DOI 10.1016/S0001-8708(81)80007-2
- Peter B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series, vol. 11, Publish or Perish, Inc., Wilmington, DE, 1984. MR 783634
- David Groisser and Thomas H. Parker, Semiclassical Yang-Mills theory. I. Instantons, Comm. Math. Phys. 135 (1990), no.Β 1, 101β140. MR 1086754, DOI 10.1007/BF02097659
- Thomas Parker and Steven Rosenberg, Invariants of conformal Laplacians, J. Differential Geom. 25 (1987), no.Β 2, 199β222. MR 880183
- Steven Rosenberg, The determinant of a conformally covariant operator, J. London Math. Soc. (2) 36 (1987), no.Β 3, 553β568. MR 918645, DOI 10.1112/jlms/s2-36.3.553
- A. S. Schwarz, Instantons and fermions in the field of instanton, Comm. Math. Phys. 64 (1979), no.Β 3, 233β268. MR 520092, DOI 10.1007/BF01221733
- A. S. Schwarz, The partition function of a degenerate functional, Comm. Math. Phys. 67 (1979), no.Β 1, 1β16. MR 535228, DOI 10.1007/BF01223197
- R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp.Β 288β307. MR 0237943
- Edward Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no.Β 4, 661β692 (1983). MR 683171
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 749-760
- MSC: Primary 58G26; Secondary 58G10, 81T50
- DOI: https://doi.org/10.1090/S0002-9947-1992-1075383-2
- MathSciNet review: 1075383