On the structure of twisted group $C^ *$-algebras
HTML articles powered by AMS MathViewer
- by Judith A. Packer and Iain Raeburn
- Trans. Amer. Math. Soc. 334 (1992), 685-718
- DOI: https://doi.org/10.1090/S0002-9947-1992-1078249-7
- PDF | Request permission
Abstract:
We first give general structural results for the twisted group algebras ${C^{\ast } }(G,\sigma )$ of a locally compact group $G$ with large abelian subgroups. In particular, we use a theorem of Williams to realise ${C^{\ast }}(G,\sigma )$ as the sections of a ${C^{\ast }}$-bundle whose fibres are twisted group algebras of smaller groups and then give criteria for the simplicity of these algebras. Next we use a device of Rosenberg to show that, when $\Gamma$ is a discrete subgroup of a solvable Lie group $G$, the $K$-groups ${K_ {\ast } }({C^{\ast } }(\Gamma ,\sigma ))$ are isomorphic to certain twisted $K$-groups ${K^{\ast } }(G/\Gamma ,\delta (\sigma ))$ of the homogeneous space $G/\Gamma$, and we discuss how the twisting class $\delta (\sigma ) \in {H^3}(G/\Gamma ,\mathbb {Z})$ depends on the cocycle $\sigma$. For many particular groups, such as ${\mathbb {Z}^n}$ or the integer Heisenberg group, $\delta (\sigma )$ always vanishes, so that ${K_ {\ast } }({C^{\ast } }(\Gamma ,\sigma ))$ is independent of $\sigma$, but a detailed analysis of examples of the form ${\mathbb {Z}^n} \rtimes \mathbb {Z}$ shows this is not in general the case.References
- Joel Anderson and William Paschke, The rotation algebra, Houston J. Math. 15 (1989), no. 1, 1–26. MR 1002078
- Louis Auslander and Calvin C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. 62 (1966), 199. MR 207910
- N. B. Backhouse, Projective representations of space groups. II. Factor systems, Quart. J. Math. Oxford Ser. (2) 21 (1970), 277–295. MR 281803, DOI 10.1093/qmath/21.3.277
- Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. MR 0364537, DOI 10.1016/0022-1236(73)90075-x J. Bellisard, $K$-theory of ${C^{\ast } }$-algebras in solid state physics, Statistical mechanics and field theory: mathematical aspects (Groningen, 1985), Lecture Notes in Physics, vol. 257, Springer, Berlin and New York, 1986, pp. 99-156.
- Berndt Brenken, Joachim Cuntz, George A. Elliott, and Ryszard Nest, On the classification of noncommutative tori. III, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 503–526. MR 878397, DOI 10.1090/conm/062/878397
- Robert C. Busby and Harvey A. Smith, Representations of twisted group algebras, Trans. Amer. Math. Soc. 149 (1970), 503–537. MR 264418, DOI 10.1090/S0002-9947-1970-0264418-8
- F. Combes, Crossed products and Morita equivalence, Proc. London Math. Soc. (3) 49 (1984), no. 2, 289–306. MR 748991, DOI 10.1112/plms/s3-49.2.289
- Alain Connes, $C^{\ast }$ algèbres et géométrie différentielle, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 13, A599–A604 (French, with English summary). MR 572645
- A. Connes, An analogue of the Thom isomorphism for crossed products of a $C^{\ast }$-algebra by an action of $\textbf {R}$, Adv. in Math. 39 (1981), no. 1, 31–55. MR 605351, DOI 10.1016/0001-8708(81)90056-6
- Shaun Disney, George A. Elliott, Alexander Kumjian, and Iain Raeburn, On the classification of noncommutative tori, C. R. Math. Rep. Acad. Sci. Canada 7 (1985), no. 2, 137–141. MR 781813
- P. Donovan and M. Karoubi, Graded Brauer groups and $K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 5–25. MR 282363, DOI 10.1007/BF02684650
- Samuel Eilenberg and Saunders MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. (2) 46 (1945), 480–509. MR 13312, DOI 10.2307/1969165
- G. A. Elliott, On the $K$-theory of the $C^{\ast }$-algebra generated by a projective representation of a torsion-free discrete abelian group, Operator algebras and group representations, Vol. I (Neptun, 1980) Monogr. Stud. Math., vol. 17, Pitman, Boston, MA, 1984, pp. 157–184. MR 731772
- H. Furstenberg, Strict ergodicity and transformation of the torus, Amer. J. Math. 83 (1961), 573–601. MR 133429, DOI 10.2307/2372899
- Elliot C. Gootman and Jonathan Rosenberg, The structure of crossed product $C^{\ast }$-algebras: a proof of the generalized Effros-Hahn conjecture, Invent. Math. 52 (1979), no. 3, 283–298. MR 537063, DOI 10.1007/BF01389885
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250. MR 493349, DOI 10.1007/BF02392308
- Philip Green, The structure of imprimitivity algebras, J. Functional Analysis 36 (1980), no. 1, 88–104. MR 568977, DOI 10.1016/0022-1236(80)90108-1
- F. J. Hahn, On affine transformations of compact abelian groups, Amer. J. Math. 85 (1963), 428–446. MR 155956, DOI 10.2307/2373133
- Keith Hannabuss, Representations of nilpotent locally compact groups, J. Functional Analysis 34 (1979), no. 1, 146–165. MR 551115, DOI 10.1016/0022-1236(79)90030-2 E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin, 1963.
- H. Hoare and W. Parry, Affine transformations with quasi-discrete spectrum. I, J. London Math. Soc. 41 (1966), 88–96. MR 186750, DOI 10.1112/jlms/s1-41.1.88
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8 R. Ji, Ph.D. thesis, SUNY at Stony Brook, 1986.
- Akitaka Kishimoto, Outer automorphisms and reduced crossed products of simple $C^{\ast }$-algebras, Comm. Math. Phys. 81 (1981), no. 3, 429–435. MR 634163, DOI 10.1007/BF01209077
- Adam Kleppner, Multipliers on abelian groups, Math. Ann. 158 (1965), 11–34. MR 174656, DOI 10.1007/BF01370393
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428 —, Induced representations, Representation Theory of Lie Groups, London Math. Soc. Lecture Notes, no. 34, Cambridge Univ. Press, 1979, pp. 20-65.
- A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation 1951 (1951), no. 39, 33. MR 0039734
- Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63; ibid. 113 (1964), 64–86. MR 171880, DOI 10.1090/S0002-9947-1964-0171880-5
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. IV, Trans. Amer. Math. Soc. 221 (1976), no. 1, 35–58. MR 414776, DOI 10.1090/S0002-9947-1976-0414776-1
- G. D. Mostow, Cohomology of topological groups and solvmanifolds, Ann. of Math. (2) 73 (1961), 20–48. MR 125179, DOI 10.2307/1970281
- Thomas Muir, A treatise on the theory of determinants, Dover Publications, Inc., New York, 1960. Revised and enlarged by William H. Metzler. MR 0114826
- Judith A. Packer, $K$-theoretic invariants for $C^\ast$-algebras associated to transformations and induced flows, J. Funct. Anal. 67 (1986), no. 1, 25–59. MR 842602, DOI 10.1016/0022-1236(86)90042-X —, ${C^{\ast } }$-algebras corresponding to projective representations of discrete Heisenberg groups, J. Operator Theory 18 (1987), 42-66.
- Judith A. Packer, Twisted group $C^*$-algebras corresponding to nilpotent discrete groups, Math. Scand. 64 (1989), no. 1, 109–122. MR 1036431, DOI 10.7146/math.scand.a-12250
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 2, 293–311. MR 1002543, DOI 10.1017/S0305004100078129
- Judith A. Packer and Iain Raeburn, Twisted crossed products of $C^*$-algebras. II, Math. Ann. 287 (1990), no. 4, 595–612. MR 1066817, DOI 10.1007/BF01446916
- John Phillips and Iain Raeburn, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), no. 2, 215–241. MR 749160
- M. Pimsner and D. Voiculescu, Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^{\ast }$-algebras, J. Operator Theory 4 (1980), no. 1, 93–118. MR 587369
- Iain Raeburn, Induced $C^*$-algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (1988), no. 3, 369–387. MR 936317, DOI 10.1007/BF01456331
- Iain Raeburn and Jonathan Rosenberg, Crossed products of continuous-trace $C^\ast$-algebras by smooth actions, Trans. Amer. Math. Soc. 305 (1988), no. 1, 1–45. MR 920145, DOI 10.1090/S0002-9947-1988-0920145-6
- Iain Raeburn and Dana P. Williams, Pull-backs of $C^\ast$-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 287 (1985), no. 2, 755–777. MR 768739, DOI 10.1090/S0002-9947-1985-0768739-2
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2 —, Induced representation of ${C^{\ast }}$-algebras, Adv. in Math. 13 (1974), 176-257. —, Applications of strong Morita equivalence to transformation group ${C^{\ast }}$-algebras, Proc. Sympos. Pure Math., Part I, vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 229-310.
- Marc A. Rieffel, The cancellation theorem for projective modules over irrational rotation $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 47 (1983), no. 2, 285–302. MR 703981, DOI 10.1112/plms/s3-47.2.285
- Marc A. Rieffel, Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40 (1988), no. 2, 257–338. MR 941652, DOI 10.4153/CJM-1988-012-9
- Marc A. Rieffel, Continuous fields of $C^*$-algebras coming from group cocycles and actions, Math. Ann. 283 (1989), no. 4, 631–643. MR 990592, DOI 10.1007/BF01442857
- Jonathan Rosenberg, Homological invariants of extensions of $C^{\ast }$-algebras, Operator algebras and applications, Part 1 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1982, pp. 35–75. MR 679694, DOI 10.1090/pspum/038.1/679694 —, Group ${C^{\ast }}$-algebras and topological invariants. Operator Algebras and Group Representations, Pitman, New York, 1984, pp. 95-115.
- Jonathan Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 368–381. MR 1018964, DOI 10.1017/S1446788700033097
- V. S. Varadarajan, Geometry of quantum theory. Vol. II, The University Series in Higher Mathematics, Van Nostrand Reinhold Co., New York-Toronto-London, 1970. MR 0471675
- Peter Walters, Ergodic theory—introductory lectures, Lecture Notes in Mathematics, Vol. 458, Springer-Verlag, Berlin-New York, 1975. MR 0480949, DOI 10.1007/BFb0112501 A. Wassermann, Automorphic actions of compact groups on operator algebras, Ph.D. dissertation, Univ. of Pennsylvania, 1981.
- Dana P. Williams, The structure of crossed products by smooth actions, J. Austral. Math. Soc. Ser. A 47 (1989), no. 2, 226–235. MR 1008836, DOI 10.1017/S1446788700031657
- Ole A. Nielsen, Unitary representations and coadjoint orbits of low-dimensional nilpotent Lie groups, Queen’s Papers in Pure and Applied Mathematics, vol. 63, Queen’s University, Kingston, ON, 1983. MR 773296
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 685-718
- MSC: Primary 22D25; Secondary 19K99, 46L55, 46L80
- DOI: https://doi.org/10.1090/S0002-9947-1992-1078249-7
- MathSciNet review: 1078249