A PL geometric study of algebraic $K$ theory
HTML articles powered by AMS MathViewer
- by Bi Zhong Hu PDF
- Trans. Amer. Math. Soc. 334 (1992), 783-808 Request permission
Abstract:
This paper manages to apply the Farrell-Jones theory on algebraic $K$-groups of closed negatively curved riemannian manifolds to Gromov’s hyperbolic group theory. The paper reaches the conclusion that for any finite polyhedron $K$ with negative curvature, $\operatorname {Wh}({\pi _1}K) = 0$ .References
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4
- Steve Ferry, Homotoping $\varepsilon$-maps to homeomorphisms, Amer. J. Math. 101 (1979), no. 3, 567–582. MR 533191, DOI 10.2307/2373798
- Michael W. Davis, Coxeter groups and aspherical manifolds, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes in Math., vol. 1051, Springer, Berlin, 1984, pp. 197–221. MR 764580, DOI 10.1007/BFb0075568
- Michael W. Davis and Tadeusz Januszkiewicz, Hyperbolization of polyhedra, J. Differential Geom. 34 (1991), no. 2, 347–388. MR 1131435
- Robert D. Edwards and Robion C. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (2) 93 (1971), 63–88. MR 283802, DOI 10.2307/1970753
- P. Eberlein and B. O’Neill, Visibility manifolds, Pacific J. Math. 46 (1973), 45–109. MR 336648, DOI 10.2140/pjm.1973.46.45
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. I, Ann. of Math. (2) 124 (1986), no. 3, 531–569. MR 866708, DOI 10.2307/2007092
- F. T. Farrell and L. E. Jones, $K$-theory and dynamics. II, Ann. of Math. (2) 126 (1987), no. 3, 451–493. MR 916716, DOI 10.2307/1971358
- F. T. Farrell and L. E. Jones, A topological analogue of Mostow’s rigidity theorem, J. Amer. Math. Soc. 2 (1989), no. 2, 257–370. MR 973309, DOI 10.1090/S0894-0347-1989-0973309-4
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- M. Gromov, Hyperbolic manifolds, groups and actions, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 183–213. MR 624814
- Mikhael Gromov, Infinite groups as geometric objects, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 385–392. MR 804694
- Wu Chung Hsiang, Geometric applications of algebraic $K$-theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 99–118. MR 804679 B. Hu, $h$-cobordisms over certain nonpositively curved spaces, Thesis, SUNY, Stony Brook, 1989.
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132–138. MR 0161345 G. Moussong, Hyperbolic coxeter groups, Thesis, Ohio State Univ., 1988.
- Frank Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), no. 2, 275–331. MR 549490, DOI 10.2307/1971262
- Frank Quinn, Topological transversality holds in all dimensions, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 145–148. MR 929089, DOI 10.1090/S0273-0979-1988-15629-7
- Atle Selberg, On discontinuous groups in higher-dimensional symmetric spaces, Contributions to function theory (Internat. Colloq. Function Theory, Bombay, 1960) Tata Institute of Fundamental Research, Bombay, 1960, pp. 147–164. MR 0130324
- L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271–294. MR 295365, DOI 10.1016/0040-9383(72)90014-6 J. L. Tits, On buildings and their applications, Proc. ICM Vancouver, 1974, pp. 209-221.
- Friedhelm Waldhausen, Whitehead groups of generalized free products, Algebraic $K$-theory, II: “Classical” algebraic $K$-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 342, Springer, Berlin, 1973, pp. 155–179. MR 0370576 —, Algebraic $K$-theory of generalized free products, Ann. of Math. 108 (1978), 135-256.
Additional Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 783-808
- MSC: Primary 57Q10; Secondary 19B28, 53C21, 57N60, 57R80
- DOI: https://doi.org/10.1090/S0002-9947-1992-1085943-0
- MathSciNet review: 1085943