## Hypoellipticity on Cauchy-Riemann manifolds

HTML articles powered by AMS MathViewer

- by Johannes A. Petersen PDF
- Trans. Amer. Math. Soc.
**334**(1992), 615-639 Request permission

## Abstract:

Using a recent homotopy formula by Trèves, it is shown that the existence of $(q + 1)$-dimensional holomorphic supporting manifolds is a sufficient condition for the hypoellipticity on level $q$ and $n - q$ of a tangential Cauchy-Riemann complex of ${\text {CR}}$-dimension $n$. In the hypersurface case, this result is given microlocally.## References

- R. A. Aĭrapetyan and G. M. Khenkin,
*Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions*, Uspekhi Mat. Nauk**39**(1984), no. 3(237), 39–106 (Russian). MR**747791**
A. Andreotti and C. D. Hill, - G. B. Folland and E. M. Stein,
*Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group*, Comm. Pure Appl. Math.**27**(1974), 429–522. MR**367477**, DOI 10.1002/cpa.3160270403 - G. M. Henkin,
*H. Lewy’s equation and analysis on pseudoconvex manifolds*, Uspehi Mat. Nauk**32**(1977), no. 3(195), 57–118, 247 (Russian). MR**0454067**
L. Hörmander, - Lars Hörmander,
*The analysis of linear partial differential operators. I*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR**717035**, DOI 10.1007/978-3-642-96750-4 - J. J. Kohn and L. Nirenberg,
*A pseudo-convex domain not admitting a holomorphic support function*, Math. Ann.**201**(1973), 265–268. MR**330513**, DOI 10.1007/BF01428194 - H.-M. Maire,
*Necessary and sufficient condition for maximal hypoellipticity of $\overline \partial _b$*, Partial differential equations (Rio de Janeiro, 1986) Lecture Notes in Math., vol. 1324, Springer, Berlin, 1988, pp. 178–185. MR**965534**, DOI 10.1007/BFb0100791 - Alexander Nagel and Jean-Pierre Rosay,
*Nonexistence of homotopy formula for $(0,1)$ forms on hypersurfaces in $\textbf {C}^3$*, Duke Math. J.**58**(1989), no. 3, 823–827. MR**1016447**, DOI 10.1215/S0012-7094-89-05838-9
Jl. A. Petersen, - François Trèves,
*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR**597145** - François Trèves,
*Hypoanalytic structures*, Microlocal analysis (Boulder, Colo., 1983) Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984, pp. 23–44. MR**741037**, DOI 10.1090/conm/027/741037 - François Trèves,
*Homotopy formulas in the tangential Cauchy-Riemann complex*, Mem. Amer. Math. Soc.**87**(1990), no. 434, viii+121. MR**1028234**, DOI 10.1090/memo/0434

*E. E. Levi convexity and the Hans Lewy problem*, Ann. Scuola Norm. Sup. Pisa

**26**(1972), 325-363 and 747-806.

*Pseudodifferential operators and non-elliptic boundary problems*, Ann. of Math. (2)

**83**(1966), 129-209.

*On the hypoellipticity of the tangential Cauchy-Riemann operator*, Thesis, Rutgers Univ., May 1990.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**334**(1992), 615-639 - MSC: Primary 32F20; Secondary 32F40, 35H05
- DOI: https://doi.org/10.1090/S0002-9947-1992-1113696-6
- MathSciNet review: 1113696