The monotonicity of the entropy for a family of degree one circle maps
HTML articles powered by AMS MathViewer
- by Lluís Alsedà and Francesc Mañosas
- Trans. Amer. Math. Soc. 334 (1992), 651-684
- DOI: https://doi.org/10.1090/S0002-9947-1992-1129433-5
- PDF | Request permission
Abstract:
For the natural biparametric family of piecewise linear circle maps with two pieces we show that the entropy increases when any of the two parameters increases. We also describe the regions of the parameter space where the monotonicity is strict.References
- Lluís Alsedà, Jaume Llibre, Francesc Mañosas, and MichałMisiurewicz, Lower bounds of the topological entropy for continuous maps of the circle of degree one, Nonlinearity 1 (1988), no. 3, 463–479. MR 955624, DOI 10.1088/0951-7715/1/3/004
- Lluís Alsedà, Jaume Llibre, MichałMisiurewicz, and Carles Simó, Twist periodic orbits and topological entropy for continuous maps of the circle of degree one which have a fixed point, Ergodic Theory Dynam. Systems 5 (1985), no. 4, 501–517. MR 829854, DOI 10.1017/S0143385700003126
- Lluís Alsedà and Francesc Mañosas, Kneading theory and rotation intervals for a class of circle maps of degree one, Nonlinearity 3 (1990), no. 2, 413–452. MR 1054582, DOI 10.1088/0951-7715/3/2/008
- K. M. Brucks, M. Misiurewicz, and C. Tresser, Monotonicity properties of the family of trapezoidal maps, Comm. Math. Phys. 137 (1991), no. 1, 1–12. MR 1099253, DOI 10.1007/BF02099114 A. Douady and J. H. Hubbard, Etude dynamique des polynomes complexes I and II, Publ. Math. Orsay, 84-02 (1984) and 85-04 (1985).
- John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI 10.1007/BFb0082847
- MichałMisiurewicz, Periodic points of maps of degree one of a circle, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 221–227 (1983). MR 693977, DOI 10.1017/s014338570000153x
- M. Misiurewicz and E. Visinescu, Kneading sequences of skew tent maps, Ann. Inst. H. Poincaré Probab. Statist. 27 (1991), no. 1, 125–140 (English, with French summary). MR 1098567
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 651-684
- MSC: Primary 58F11; Secondary 54C70, 54H20, 58F08, 58F20
- DOI: https://doi.org/10.1090/S0002-9947-1992-1129433-5
- MathSciNet review: 1129433