Generation and propagation of interfaces in reactiondiffusion systems
HTML articles powered by AMS MathViewer
 by Xinfu Chen PDF
 Trans. Amer. Math. Soc. 334 (1992), 877913 Request permission
Abstract:
This paper is concerned with the asymptotic behavior, as $\varepsilon \searrow 0$, of the solution $({u^\varepsilon },{v^\varepsilon })$ of the second initialboundary value problem of the reactiondiffusion system: \[ \left \{ {\begin {array}{*{20}{c}} {u_t^\varepsilon  \varepsilon \Delta {u^\varepsilon } = \frac {1}{\varepsilon }f({u^\varepsilon },{\upsilon ^\varepsilon }) \equiv \frac {1}{\varepsilon }[{u^\varepsilon }(1  {u^{\varepsilon 2}})  {\upsilon ^\varepsilon }],} \hfill \\ {\upsilon _t^\varepsilon  \Delta {\upsilon ^\varepsilon } = {u^\varepsilon }  \gamma {\upsilon ^\varepsilon }} \hfill \\ \end {array} } \right .\] where $\gamma > 0$ is a constant. When $v \in (  2\sqrt 3 /9,2\sqrt 3 /9)$, $f$ is bistable in the sense that the ordinary differential equation ${u_t} = f(u,v)$ has two stable solutions $u = {h_  }(v)$ and $u = {h_ + }(v)$ and one unstable solution $u = {h_0}(v)$, where ${h_  }(v), {h_0}(v)$, and ${h_ + }(v)$ are the three solutions of the algebraic equation $f(u,v) = 0$. We show that, when the initial data of $v$ is in the interval $(  2\sqrt 3 /9,2\sqrt 3 /9)$, the solution $({u^\varepsilon },{v^\varepsilon })$ of the system tends to a limit $(u,v)$ which is a solution of a free boundary problem, as long as the free boundary problem has a unique classical solution. The function $u$ is a "phase" function in the sense that it coincides with ${h_ + }(v)$ in one region ${\Omega _ + }$ and with ${h_  }(v)$ in another region ${\Omega _  }$. The common boundary (free boundary or interface) of the two regions ${\Omega _  }$ and ${\Omega _ + }$ moves with a normal velocity equal to $\mathcal {V}(v)$, where $\mathcal {V}( \bullet )$ is a function that can be calculated. The local (in time) existence of a unique classical solution to the free boundary problem is also established. Further we show that if initially $u( \bullet , 0)  {h_0}(v( \bullet , 0))$ takes both positive and negative values, then an interface will develop in a short time $O(\varepsilon \ln \varepsilon )$ near the hypersurface where $u(x,0)  {h_0}(v(x,0)) = 0$.References

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsing, Acta Metall. 27 (1979), 10841095.
 D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974) Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975, pp. 5–49. MR 0427837
 D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33–76. MR 511740, DOI 10.1016/00018708(78)901305 G. Barles, Remarks on a flame propagation model, Rapport INRIA, #464, 1985.
 Lia Bronsard and Robert V. Kohn, Motion by mean curvature as the singular limit of GinzburgLandau dynamics, J. Differential Equations 90 (1991), no. 2, 211–237. MR 1101239, DOI 10.1016/00220396(91)901472
 Lia Bronsard and Robert V. Kohn, On the slowness of phase boundary motion in one space dimension, Comm. Pure Appl. Math. 43 (1990), no. 8, 983–997. MR 1075075, DOI 10.1002/cpa.3160430804
 J. Carr and R. L. Pego, Very slow phase separation in one dimension, PDEs and continuum models of phase transitions (Nice, 1988) Lecture Notes in Phys., vol. 344, Springer, Berlin, 1989, pp. 216–226. MR 1036071, DOI 10.1007/BFb0024946
 Jack Carr and Robert Pego, Invariant manifolds for metastable patterns in $u_t=\epsilon ^2u_{xx}f(u)$, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), no. 12, 133–160. MR 1076358, DOI 10.1017/S0308210500031425
 Xinfu Chen, Generation and propagation of interfaces for reactiondiffusion equations, J. Differential Equations 96 (1992), no. 1, 116–141. MR 1153311, DOI 10.1016/00220396(92)90146E
 XuYan Chen, Dynamics of interfaces in reaction diffusion systems, Hiroshima Math. J. 21 (1991), no. 1, 47–83. MR 1091432
 Yun Gang Chen, Yoshikazu Giga, and Shun’ichi Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33 (1991), no. 3, 749–786. MR 1100211
 R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989. Partial differential equations; Reprint of the 1962 original; A WileyInterscience Publication. MR 1013360
 M. G. Crandall, L. C. Evans, and P.L. Lions, Some properties of viscosity solutions of HamiltonJacobi equations, Trans. Amer. Math. Soc. 282 (1984), no. 2, 487–502. MR 732102, DOI 10.1090/S0002994719840732102X
 Piero de Mottoni and Michelle Schatzman, Évolution géométrique d’interfaces, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 7, 453–458 (French, with English summary). MR 1055457 —, Development of interfaces in ${\mathcal {R}^N}$, preprint. L. C. Evans, H. M. Soner, and P. E. Souganidis, The AllenCahn equation and the generalized motion by mean curvature, preprint.
 L. C. Evans and J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geom. 33 (1991), no. 3, 635–681. MR 1100206
 Paul C. Fife, Dynamics of internal layers and diffusive interfaces, CBMSNSF Regional Conference Series in Applied Mathematics, vol. 53, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR 981594, DOI 10.1137/1.9781611970180
 Paul C. Fife and Ling Hsiao, The generation and propagation of internal layers, Nonlinear Anal. 12 (1988), no. 1, 19–41. MR 924750, DOI 10.1016/0362546X(88)900107
 Paul C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rational Mech. Anal. 65 (1977), no. 4, 335–361. MR 442480, DOI 10.1007/BF00250432
 John J. Tyson and Paul C. Fife, Target patterns in a realistic model of the BelousovZhabotinskii reaction, J. Chem. Phys. 73 (1980), no. 5, 2224–2237. MR 583644, DOI 10.1063/1.440418
 Avner Friedman, Partial differential equations of parabolic type, PrenticeHall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
 G. Fusco, A geometric approach to the dynamics of $u_t=\epsilon ^2u_{xx}+f(u)$ for small $\epsilon$, Problems involving change of type (Stuttgart, 1988) Lecture Notes in Phys., vol. 359, Springer, Berlin, 1990, pp. 53–73. MR 1062209, DOI 10.1007/3540525955_{8}5
 G. Fusco and J. K. Hale, Slowmotion manifolds, dormant instability, and singular perturbations, J. Dynam. Differential Equations 1 (1989), no. 1, 75–94. MR 1010961, DOI 10.1007/BF01048791 Y. Giga, S. Goto, and H. Ishii, Global existence of weak solutions for interface equations coupled with diffusion equations, IMA Preprint #806, University of Minnesota, 1991. D. Hilhorst, Y. Nishiura, and M. Mimura, A free boundary problem arising from reactiondiffusion system, preprint, 1990. O. A. Ladyzhenskaja, V. A. Solonnikov, and N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc., Providence, R.I., 1968.
 T. Ohta, M. Mimura, and R. Kobayashi, Higherdimensional localized patterns in excitable media, Phys. D 34 (1989), no. 12, 115–144. MR 982383, DOI 10.1016/01672789(89)902303
 Stanley Osher and James A. Sethian, Fronts propagating with curvaturedependent speed: algorithms based on HamiltonJacobi formulations, J. Comput. Phys. 79 (1988), no. 1, 12–49. MR 965860, DOI 10.1016/00219991(88)900022
 Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller, Fast reaction, slow diffusion, and curve shortening, SIAM J. Appl. Math. 49 (1989), no. 1, 116–133. MR 978829, DOI 10.1137/0149007
 Joel Smoller, Shock waves and reactiondiffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, SpringerVerlag, New York, 1994. MR 1301779, DOI 10.1007/9781461208730
 J. A. Sethian, Curvature and the evolution of fronts, Comm. Math. Phys. 101 (1985), no. 4, 487–499. MR 815197
Additional Information
 © Copyright 1992 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 334 (1992), 877913
 MSC: Primary 35R35; Secondary 35K57
 DOI: https://doi.org/10.1090/S00029947199211440133
 MathSciNet review: 1144013