Generalized group presentation and formal deformations of CW complexes
HTML articles powered by AMS MathViewer
- by Richard A. Brown
- Trans. Amer. Math. Soc. 334 (1992), 519-549
- DOI: https://doi.org/10.1090/S0002-9947-1992-1153010-3
- PDF | Request permission
Abstract:
A Peiffer-Whitehead word system $\mathcal {W}$, or generalized group presentation, consists of generators, relators (words of order $2$), and words of higher order $n$ that represent elements of a free crossed module $(n = 3)$ or a free module $(n > 3)$. The ${P_n}$-equivalence relation on word systems generalizes the extended Nielsen equivalence relation on ordinary group presentations. Word systems, called homotopy readings, can be associated with any connected ${\text {CW}}$ complex $K$ by removing a maximal tree and selecting one generator or word per cell, via relative homotopy. Given homotopy readings ${\mathcal {W}_1}$ and ${\mathcal {W}_2}$ of finite ${\text {CW}}$ complexes ${K_1}$ and ${K_2}$ respectively, we show that ${\mathcal {W}_1}$ is ${P_n}$-equivalent to ${\mathcal {W}_2}$ if and only if ${K_1}$ formally $(n + 1)$-deforms to ${K_2}$. This extends results of P. Wright (1975) and W. Metzler (1982) for the case $n = 2$. For $n \geq 3$, it follows that ${\mathcal {W}_1}$ is ${P_n}$-equivalent to ${\mathcal {W}_2}$ if and only if ${K_1}$ and ${K_2}$ have the same simple homotopy type.References
- J. J. Andrews and M. L. Curtis, Free groups and handlebodies, Proc. Amer. Math. Soc. 16 (1965), 192–195. MR 173241, DOI 10.1090/S0002-9939-1965-0173241-8
- Ronald Brown, On the second relative homotopy group of an adjunction space: an exposition of a theorem of J. H. C. Whitehead, J. London Math. Soc. (2) 22 (1980), no. 1, 146–152. MR 579818, DOI 10.1112/jlms/s2-22.1.146
- Ronald Brown and Philip J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21 (1981), no. 3, 233–260. MR 617135, DOI 10.1016/0022-4049(81)90018-9
- Robert Craggs, Free Heegaard diagrams and extended Nielsen transformations. I, Michigan Math. J. 26 (1979), no. 2, 161–186. MR 532318
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. 45 (1958), 103–118. MR 92959, DOI 10.4064/fm-45-1-103-118
- Wolfgang Metzler, Äquivalenzklassen von Gruppenbeschreibungen, Identitäten und einfacher Homotopietyp in niederen Dimensionen, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 291–326 (German). MR 564434 Reneé Peiffer, Über Identitäten zwischen Relationen, J. Reine Angew. Math. 285 (1976), 17-23.
- Elvira Strasser Rapaport, Groups of order $1$: Some properties of presentations, Acta Math. 121 (1968), 127–150. MR 229704, DOI 10.1007/BF02391911
- John G. Ratcliffe, Free and projective crossed modules, J. London Math. Soc. (2) 22 (1980), no. 1, 66–74. MR 579810, DOI 10.1112/jlms/s2-22.1.66
- Kurt Reidemeister, Einführung in die kombinatorische Topologie, Chelsea Publishing Co., New York, N. Y., 1950 (German). MR 0036991
- C. T. C. Wall, Formal deformations, Proc. London Math. Soc. (3) 16 (1966), 342–352. MR 193635, DOI 10.1112/plms/s3-16.1.342
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508
- J. H. C. Whitehead, Combinatorial homotopy. II, Bull. Amer. Math. Soc. 55 (1949), 453–496. MR 30760, DOI 10.1090/S0002-9904-1949-09213-3
- Perrin Wright, Group presentations and formal deformations, Trans. Amer. Math. Soc. 208 (1975), 161–169. MR 380813, DOI 10.1090/S0002-9947-1975-0380813-5 Simon F. Young, Contractible $2$-complexes, Masters Thesis, Univ. of Cambridge, 1976.
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 334 (1992), 519-549
- MSC: Primary 57M05; Secondary 20F05, 57Q05, 57Q10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1153010-3
- MathSciNet review: 1153010