## Generalized group presentation and formal deformations of CW complexes

HTML articles powered by AMS MathViewer

- by Richard A. Brown PDF
- Trans. Amer. Math. Soc.
**334**(1992), 519-549 Request permission

## Abstract:

A Peiffer-Whitehead word system $\mathcal {W}$, or generalized group presentation, consists of generators, relators (words of order $2$), and words of higher order $n$ that represent elements of a free crossed module $(n = 3)$ or a free module $(n > 3)$. The ${P_n}$-equivalence relation on word systems generalizes the extended Nielsen equivalence relation on ordinary group presentations. Word systems, called homotopy readings, can be associated with any connected ${\text {CW}}$ complex $K$ by removing a maximal tree and selecting one generator or word per cell, via relative homotopy. Given homotopy readings ${\mathcal {W}_1}$ and ${\mathcal {W}_2}$ of finite ${\text {CW}}$ complexes ${K_1}$ and ${K_2}$ respectively, we show that ${\mathcal {W}_1}$ is ${P_n}$-equivalent to ${\mathcal {W}_2}$ if and only if ${K_1}$ formally $(n + 1)$-deforms to ${K_2}$. This extends results of P. Wright (1975) and W. Metzler (1982) for the case $n = 2$. For $n \geq 3$, it follows that ${\mathcal {W}_1}$ is ${P_n}$-equivalent to ${\mathcal {W}_2}$ if and only if ${K_1}$ and ${K_2}$ have the same simple homotopy type.## References

- J. J. Andrews and M. L. Curtis,
*Free groups and handlebodies*, Proc. Amer. Math. Soc.**16**(1965), 192–195. MR**173241**, DOI 10.1090/S0002-9939-1965-0173241-8 - Ronald Brown,
*On the second relative homotopy group of an adjunction space: an exposition of a theorem of J. H. C. Whitehead*, J. London Math. Soc. (2)**22**(1980), no. 1, 146–152. MR**579818**, DOI 10.1112/jlms/s2-22.1.146 - Ronald Brown and Philip J. Higgins,
*On the algebra of cubes*, J. Pure Appl. Algebra**21**(1981), no. 3, 233–260. MR**617135**, DOI 10.1016/0022-4049(81)90018-9 - Robert Craggs,
*Free Heegaard diagrams and extended Nielsen transformations. I*, Michigan Math. J.**26**(1979), no. 2, 161–186. MR**532318** - James Dugundji,
*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606** - E. Dyer and M.-E. Hamstrom,
*Completely regular mappings*, Fund. Math.**45**(1958), 103–118. MR**92959**, DOI 10.4064/fm-45-1-103-118 - Wolfgang Metzler,
*Äquivalenzklassen von Gruppenbeschreibungen, Identitäten und einfacher Homotopietyp in niederen Dimensionen*, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 291–326 (German). MR**564434**
Reneé Peiffer, - Elvira Strasser Rapaport,
*Groups of order $1$: Some properties of presentations*, Acta Math.**121**(1968), 127–150. MR**229704**, DOI 10.1007/BF02391911 - John G. Ratcliffe,
*Free and projective crossed modules*, J. London Math. Soc. (2)**22**(1980), no. 1, 66–74. MR**579810**, DOI 10.1112/jlms/s2-22.1.66 - Kurt Reidemeister,
*Einführung in die kombinatorische Topologie*, Chelsea Publishing Co., New York, N. Y., 1950 (German). MR**0036991** - C. T. C. Wall,
*Formal deformations*, Proc. London Math. Soc. (3)**16**(1966), 342–352. MR**193635**, DOI 10.1112/plms/s3-16.1.342 - George W. Whitehead,
*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508** - J. H. C. Whitehead,
*Combinatorial homotopy. II*, Bull. Amer. Math. Soc.**55**(1949), 453–496. MR**30760**, DOI 10.1090/S0002-9904-1949-09213-3 - Perrin Wright,
*Group presentations and formal deformations*, Trans. Amer. Math. Soc.**208**(1975), 161–169. MR**380813**, DOI 10.1090/S0002-9947-1975-0380813-5
Simon F. Young,

*Über Identitäten zwischen Relationen*, J. Reine Angew. Math.

**285**(1976), 17-23.

*Contractible*$2$-

*complexes*, Masters Thesis, Univ. of Cambridge, 1976.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**334**(1992), 519-549 - MSC: Primary 57M05; Secondary 20F05, 57Q05, 57Q10
- DOI: https://doi.org/10.1090/S0002-9947-1992-1153010-3
- MathSciNet review: 1153010