Subgroups of Bianchi groups and arithmetic quotients of hyperbolic $3$-space
HTML articles powered by AMS MathViewer
- by Fritz Grunewald and Joachim Schwermer
- Trans. Amer. Math. Soc. 335 (1993), 47-78
- DOI: https://doi.org/10.1090/S0002-9947-1993-1020042-6
- PDF | Request permission
Abstract:
Let $\mathcal {O}$ be the ring of integers in an imaginary quadratic number-field. The group ${\text {PSL}}_2(\mathcal {O})$ acts discontinuously on hyperbolic $3$-space $H$. If $\Gamma \leq {\text {PSL}}_2(\mathcal {O})$ is a torsionfree subgroup of finite index then the manifold $\Gamma \backslash H$ can be compactified to a manifold ${M_\Gamma }$ so that the inclusion $\Gamma \backslash H \leq {M_\Gamma }$ is a homotopy equivalence. ${M_\Gamma }$ is a compact with boundary. The boundary being a union of finitely many $2$-tori. This paper contains a computer-aided study of subgroups of low index in ${\text {PSL}}_2(\mathcal {O})$ for various $\mathcal {O}$. The explicit description of these subgroups leads to a study of the homeomorphism types of the ${M_\Gamma }$.References
- P. Bauer, Linkaussenräume und $2$-dimensionaler Deformationsretrakt von arithmetischen Quotienten $\Gamma \backslash H$, Diplomarbeit, Bonn, 1987.
- Luigi Bianchi, Geometrische Darstellung der Gruppen linearer Substitutionen mit ganzen complexen Coefficienten nebst Anwendungen auf die Zahlentheorie, Math. Ann. 38 (1891), no. 3, 313–333 (German). MR 1510677, DOI 10.1007/BF01199425
- Luigi Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann. 40 (1892), no. 3, 332–412 (Italian). MR 1510727, DOI 10.1007/BF01443558
- Andrew M. Brunner, Michael L. Frame, Youn W. Lee, and Norbert J. Wielenberg, Classifying torsion-free subgroups of the Picard group, Trans. Amer. Math. Soc. 282 (1984), no. 1, 205–235. MR 728710, DOI 10.1090/S0002-9947-1984-0728710-2
- Andrew M. Brunner, Youn W. Lee, and Norbert J. Wielenberg, Polyhedral groups and graph amalgamation products, Topology Appl. 20 (1985), no. 3, 289–304. MR 804041, DOI 10.1016/0166-8641(85)90096-3
- L. Clozel, On the cuspidal cohomology of arithmetic subgroups of $\textrm {SL}(2n)$ and the first Betti number of arithmetic $3$-manifolds, Duke Math. J. 55 (1987), no. 2, 475–486. MR 894591, DOI 10.1215/S0012-7094-87-05525-6
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 14, Springer-Verlag, Berlin-Göttingen-New York, 1965. MR 0174618
- J. E. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275–324. MR 743014
- J. Elstrodt, F. Grunewald, and J. Mennicke, $\textrm {PSL}(2)$ over imaginary quadratic integers, Arithmetic Conference (Metz, 1981) Astérisque, vol. 94, Soc. Math. France, Paris, 1982, pp. 43–60. MR 702365
- Benjamin Fine and Morris Newman, The normal subgroup structure of the Picard group, Trans. Amer. Math. Soc. 302 (1987), no. 2, 769–786. MR 891646, DOI 10.1090/S0002-9947-1987-0891646-3
- Dieter Flöge, Zur Struktur der $\textrm {PSL}_{2}$ über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255–279 (German). MR 704107, DOI 10.1007/BF01214824
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196–210. MR 62125, DOI 10.2307/1969686 F. Grunewald and J. Mennicke, ${\text {SL}}_2(O)$ and elliptic curves, Manuscript, Bielefeld, 1978.
- F. Grunewald, H. Helling, and J. Mennicke, $\textrm {SL}_{2}$ over complex quadratic number fields. I, Algebra i Logika 17 (1978), no. 5, 512–580, 622. MR 555260
- Fritz J. Grunewald and Joachim Schwermer, Free nonabelian quotients of $\textrm {SL}_{2}$ over orders of imaginary quadratic numberfields, J. Algebra 69 (1981), no. 2, 298–304. MR 617080, DOI 10.1016/0021-8693(81)90206-4
- Fritz J. Grunewald and Joachim Schwermer, Arithmetic quotients of hyperbolic $3$-space, cusp forms and link complements, Duke Math. J. 48 (1981), no. 2, 351–358. MR 620254 —, A non-vanishing theorem for the cuspidal cohomology of ${\text {SL}}_2$ over imaginary quadratic integers, Math. Ann. 258 (1981), 183-200.
- G. Harder, Period integrals of Eisenstein cohomology classes and special values of some $L$-functions, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981) Progr. Math., vol. 26, Birkhäuser Boston, Boston, MA, 1982, pp. 103–142. MR 685293, DOI 10.1007/978-1-4899-6699-5_{9}
- Allen Hatcher, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2) 27 (1983), no. 2, 345–355. MR 692540, DOI 10.1112/jlms/s2-27.2.345
- George Havas, A Reidemeister-Schreier program, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Lecture Notes in Math., Vol. 372, Springer, Berlin, 1974, pp. 347–356. MR 0376827
- George Havas and Leon S. Sterling, Integer matrices and abelian groups, Symbolic and algebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979) Lecture Notes in Comput. Sci., vol. 72, Springer, Berlin-New York, 1979, pp. 431–451. MR 575704
- George Havas, P. E. Kenne, J. S. Richardson, and E. F. Robertson, A Tietze transformation program, Computational group theory (Durham, 1982) Academic Press, London, 1984, pp. 69–73. MR 760651
- P. J. Hilton and U. Stammbach, A course in homological algebra, 2nd ed., Graduate Texts in Mathematics, vol. 4, Springer-Verlag, New York, 1997. MR 1438546, DOI 10.1007/978-1-4419-8566-8 N. Krámer, Beiträge zur Arithmetik imaginär quadratischer Zahlkörper, Bonner Math. Schriften, vol. 191, Bonn, 1985.
- Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1966. MR 0207802 E. Mendoza, Cohomology of $PG{L_2}$ over imaginary quadratic integers, Bonner Math. Schriften, vol. 128, Bonn, 1980.
- G. D. Mostow, Strong rigidity of locally symmetric spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973. MR 0385004 J. Neubüser, An elementary introduction to coset table methods in computational group theory, Groups St. Andrews 1981 (C. M. Campbell and E. F. Robertson, eds.), LMS Lecture Notes, vol. 71, Cambridge Univ. Press, London and New York.
- E. Picard, Sur un groupe de transformations des Points de l’espace situés du même côté d’un plan, Bull. Soc. Math. France 12 (1884), 43–47 (French). MR 1503932, DOI 10.24033/bsmf.272 H. Poincaré, Mémoire sur les groupes kleinéens, Acta Math. 3 (1883), 49-92 (= Oeuvres, vol. 2, pp. 258-299).
- Gopal Prasad, Strong rigidity of $\textbf {Q}$-rank $1$ lattices, Invent. Math. 21 (1973), 255–286. MR 385005, DOI 10.1007/BF01418789
- Robert Riley, A quadratic parabolic group, Math. Proc. Cambridge Philos. Soc. 77 (1975), 281–288. MR 412416, DOI 10.1017/S0305004100051094
- Robert Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, Math. Comp. 40 (1983), no. 162, 607–632. MR 689477, DOI 10.1090/S0025-5718-1983-0689477-2
- J. Rohlfs, On the cuspidal cohomology of the Bianchi modular groups, Math. Z. 188 (1985), no. 2, 253–269. MR 772354, DOI 10.1007/BF01304213
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Joachim Schwermer, A note on link complements and arithmetic groups, Math. Ann. 249 (1980), no. 2, 107–110. MR 578717, DOI 10.1007/BF01351407
- Joachim Schwermer and Karen Vogtmann, The integral homology of $\textrm {SL}_{2}$ and $\textrm {PSL}_{2}$ of Euclidean imaginary quadratic integers, Comment. Math. Helv. 58 (1983), no. 4, 573–598. MR 728453, DOI 10.1007/BF02564653
- Jean-Pierre Serre, Le problème des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489–527 (French). MR 272790, DOI 10.2307/1970630
- T. A. Springer, Invariant theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin-New York, 1977. MR 0447428, DOI 10.1007/BFb0095644
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2 W. P. Thurston, The geometry and topology of $3$-manifolds, Lecture Notes, Princeton Univ. Press, Princeton, N.J., 1978.
- William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357–381. MR 648524, DOI 10.1090/S0273-0979-1982-15003-0
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
- Norbert Wielenberg, The structure of certain subgroups of the Picard group, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 3, 427–436. MR 503003, DOI 10.1017/S0305004100055250
- D. B. A. Epstein (ed.), Low-dimensional topology and Kleinian groups, London Mathematical Society Lecture Note Series, vol. 112, Cambridge University Press, Cambridge, 1986. MR 903856
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 47-78
- MSC: Primary 11F06; Secondary 20H25, 22E40, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1993-1020042-6
- MathSciNet review: 1020042