Intersection theory of linear embeddings
HTML articles powered by AMS MathViewer
- by Sean Keel
- Trans. Amer. Math. Soc. 335 (1993), 195-212
- DOI: https://doi.org/10.1090/S0002-9947-1993-1040263-6
- PDF | Request permission
Abstract:
We study intersection theoretic properties of subschemes defined by ideal sheaves of linear type in particular their behavior with respect to blowups and segre classes.References
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8 S. Herzog and K. Vasconcelos, Homology and blowing up rings, Commutative Algebra, Lecture Notes in Pure and Appl. Math., Springer-Verlag, 1983, pp. 79-169.
- Craig Huneke, On the symmetric and Rees algebra of an ideal generated by a $d$-sequence, J. Algebra 62 (1980), no. 2, 268–275. MR 563225, DOI 10.1016/0021-8693(80)90179-9
- Craig Huneke, Determinantal ideals of linear type, Arch. Math. (Basel) 47 (1986), no. 4, 324–329. MR 866520, DOI 10.1007/BF01191358
- Craig Huneke, Linkage and the Koszul homology of ideals, Amer. J. Math. 104 (1982), no. 5, 1043–1062. MR 675309, DOI 10.2307/2374083 S. Keel, Intersection theory of polygon spaces (preprint). —, Intersection theory of the moduli space of pointed rational curves (preprint).
- Steven L. Kleiman, Multiple-point formulas. I. Iteration, Acta Math. 147 (1981), no. 1-2, 13–49. MR 631086, DOI 10.1007/BF02392866
- Boris V. Kotzev, Determinantal ideals of linear type of a generic symmetric matrix, J. Algebra 139 (1991), no. 2, 484–504. MR 1113787, DOI 10.1016/0021-8693(91)90305-R
- Artibano Micali, Sur les algèbres universelles, Ann. Inst. Fourier (Grenoble) 14 (1964), no. fasc. 2, 33–87 (French). MR 177009 D. Mumford, Lectures on curves on an algebrate surface, Princeton Univ. Press, Princeton, N.J.,
- Giuseppe Valla, On the symmetric and Rees algebras of an ideal, Manuscripta Math. 30 (1980), no. 3, 239–255. MR 557107, DOI 10.1007/BF01303330
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 195-212
- MSC: Primary 14C17; Secondary 14E25
- DOI: https://doi.org/10.1090/S0002-9947-1993-1040263-6
- MathSciNet review: 1040263