A dynamical proof of the multiplicative ergodic theorem
HTML articles powered by AMS MathViewer
- by Peter Walters
- Trans. Amer. Math. Soc. 335 (1993), 245-257
- DOI: https://doi.org/10.1090/S0002-9947-1993-1073779-7
- PDF | Request permission
Abstract:
We shall give a proof of the following result of Oseledec, in which $GL(d)$ denotes the space of invertible $d \times d$ real matrices, $|| \bullet ||$ denotes any norm on the space of $d \times d$ matrices, and ${\log ^+ }(t) = \max (0,\log (t))$ for $t \in [0,\infty )$.References
- N. Bourbaki, Intégration, Vol. VI, Chapitre 6, Hermann, Paris, 1959.
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
- Joel E. Cohen, Harry Kesten, and Charles M. Newman (eds.), Random matrices and their applications, Contemporary Mathematics, vol. 50, American Mathematical Society, Providence, RI, 1986. MR 841077, DOI 10.1090/conm/050
- Hans Crauel, Lyapunov exponents and invariant measures of stochastic systems on manifolds, Lyapunov exponents (Bremen, 1984) Lecture Notes in Math., vol. 1186, Springer, Berlin, 1986, pp. 271–291. MR 850084, DOI 10.1007/BFb0076848
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 0448362
- F. Ledrappier, Quelques propriétés des exposants caractéristiques, École d’été de probabilités de Saint-Flour, XII—1982, Lecture Notes in Math., vol. 1097, Springer, Berlin, 1984, pp. 305–396 (French). MR 876081, DOI 10.1007/BFb0099434
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
- M. S. Raghunathan, A proof of Oseledec’s multiplicative ergodic theorem, Israel J. Math. 32 (1979), no. 4, 356–362. MR 571089, DOI 10.1007/BF02760464
- David Ruelle, Ergodic theory of differentiable dynamical systems, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 27–58. MR 556581
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 245-257
- MSC: Primary 28D05; Secondary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1993-1073779-7
- MathSciNet review: 1073779