On Dehn functions and products of groups
HTML articles powered by AMS MathViewer
- by Stephen G. Brick
- Trans. Amer. Math. Soc. 335 (1993), 369-384
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102884-1
- PDF | Request permission
Abstract:
If $G$ is a finitely presented group then its Dehn function—or its isoperimetric inequality—is of interest. For example, $G$ satisfies a linear isoperimetric inequality iff $G$ is negatively curved (or hyperbolic in the sense of Gromov). Also, if $G$ possesses an automatic structure then $G$ satisfies a quadratic isoperimetric inequality. We investigate the effect of certain natural operations on the Dehn function. We consider direct products, taking subgroups of finite index, free products, amalgamations, and $\text {HNN}$ extensions.References
- Juan M. Alonso, Inégalités isopérimétriques et quasi-isométries, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 12, 761–764 (French, with English summary). MR 1082628 W. Ballman. E. Ghys, A. Haefliger, P. de la Harpe, E. Salem, R. Strebel, and M. Troyanov, Sur les groupes hyperboliques d’après Mikhael Gromov, Birkhäuser, 1990.
- G. Baumslag, S. M. Gersten, M. Shapiro, and H. Short, Automatic groups and amalgams, J. Pure Appl. Algebra 76 (1991), no. 3, 229–316. MR 1147304, DOI 10.1016/0022-4049(91)90139-S
- Stephen G. Brick, Dehn functions of groups and extensions of complexes, Pacific J. Math. 161 (1993), no. 1, 115–127. MR 1237140
- M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics, vol. 1441, Springer-Verlag, Berlin, 1990 (French). Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups]; With an English summary. MR 1075994
- David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson, and William P. Thurston, Word processing in groups, Jones and Bartlett Publishers, Boston, MA, 1992. MR 1161694 S. M. Gersten, Dehn functions and ${l_1}$-norms of finite presentations, Algorithms and Classifications in Combinatorial Group Theory (G. Baumslag and C. F. Miller III, eds.), Math. Sci. Res., Springer-Verlag, 1991.
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3} H. Short, Regular subgroups of automatic groups, Preprint.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 369-384
- MSC: Primary 57M20; Secondary 20E06, 20F32
- DOI: https://doi.org/10.1090/S0002-9947-1993-1102884-1
- MathSciNet review: 1102884