Extensions of Ă©tale by connected group spaces
HTML articles powered by AMS MathViewer
- by David B. Jaffe
- Trans. Amer. Math. Soc. 335 (1993), 155-173
- DOI: https://doi.org/10.1090/S0002-9947-1993-1150015-4
- PDF | Request permission
Abstract:
The main theorem, in rough terms, asserts the following. Let $K$ and $D$ be group spaces over a scheme $S$. Assume that $K$ has connected fibers and that $D$ is finite and Ă©tale over $S$ . Assume that there exists a single finite, surjective, Ă©tale, Galois morphism $\overline S \to S$ which decomposes (scheme-theoretically) every extension of $D$ by $K$. Let $\pi = \operatorname {Aut}(\overline S /S)$. Then group space extensions of $D$ with kernel $K$ are in bijective correspondence with pairs $(\xi ,\chi )$ consisting of a $\pi$-group extension \[ \xi :1 \to K(\overline S) \to X \to D(\overline S ) \to 1\] and a $\pi$-group homomorphism $\chi :X \to \operatorname {Aut}(\overline K )$ which lifts the conjugation map $X \to \operatorname {Aut}(K(\overline S ))$ and which agrees with the conjugation map $K(\bar S) \to \operatorname {Aut}(\overline K )$. In this way, the calculation of group space extensions is reduced to a purely group-theoretic calculation.References
- M. Artin, The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968) Oxford Univ. Press, London, 1969, pp. 13â34. MR 0262237
- M. Artin, Versal deformations and algebraic stacks, Invent. Math. 27 (1974), 165â189. MR 399094, DOI 10.1007/BF01390174
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 J. E. Bertin, Généralités sur les preschémas en groupes, Exposé VI$_{B}$ in Séminaire de Géométrie Algébrique (SGA 3), Lecture Notes in Math., vol. 151, Springer-Verlag, New York, 1970, pp. 318-410. M. Demazure and P. Gabriel, Groupes algébriques (Tome I), North-Holland, Paris, 1970. A. Grothendieck, Fondements de la géométrie algébrique (extraits du Séminaire Bourbaki 1957-1962), Secrétariat mathématique, Paris, 1962.
- RevĂȘtements Ă©tales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie 1960â1961 (SGA 1); DirigĂ© par Alexandre Grothendieck. AugmentĂ© de deux exposĂ©s de M. Raynaud. MR 0354651 A. Grothendieck and J. A. DieudonnĂ©, ElĂ©ments de gĂ©omĂ©trie algĂ©brique II, Inst. Hautes Ătudes Sci. Publ. Math. 8 (1961). â, ElĂ©ments de gĂ©omĂ©trie algĂ©brique IV (part two), Inst. Hautes Ătudes Sci. Publ. Math. 24 (1965). â, ElĂ©ments de gĂ©omĂ©trie algĂ©brique IV (part four), Inst. Hautes Ătudes Sci. Publ. Math. 32 (1967).
- L. K. Hua and I. Reiner, Automorphisms of the unimodular group, Trans. Amer. Math. Soc. 71 (1951), 331â348. MR 43847, DOI 10.1090/S0002-9947-1951-0043847-X
- Donald Knutson, Algebraic spaces, Lecture Notes in Mathematics, Vol. 203, Springer-Verlag, Berlin-New York, 1971. MR 0302647, DOI 10.1007/BFb0059750
- Serge Lang and John Tate, Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80 (1958), 659â684. MR 106226, DOI 10.2307/2372778
- Daniel A. Marcus, Number fields, Universitext, Springer-Verlag, New York-Heidelberg, 1977. MR 0457396, DOI 10.1007/978-1-4684-9356-6
- Hideyuki Matsumura and Masayoshi Miyanishi, On some dualities concerning abelian varieties, Nagoya Math. J. 27 (1966), 447â462. MR 206010, DOI 10.1017/S0027763000026301
- James S. Milne, Ătale cohomology, Princeton Mathematical Series, No. 33, Princeton University Press, Princeton, N.J., 1980. MR 559531
- J. S. Milne, Abelian varieties, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 103â150. MR 861974
- F. Oort, Commutative group schemes, Lecture Notes in Mathematics, vol. 15, Springer-Verlag, Berlin-New York, 1966. MR 0213365, DOI 10.1007/BFb0097479
- Michel Raynaud, Faisceaux amples sur les schĂ©mas en groupes et les espaces homogĂšnes, Lecture Notes in Mathematics, Vol. 119, Springer-Verlag, Berlin-New York, 1970 (French). MR 0260758 â, Groupes algĂ©briques unipotents. Extensions entre groupes unipotents et groupes de type multiplicatif, ExposĂ© XVII in SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique (SGA 3), Lecture Notes in Math., vol. 152, Springer-Verlag, New York, 1970, pp. 532-631.
- Maxwell Rosenlicht, Extensions of vector groups by abelian varieties, Amer. J. Math. 80 (1958), 685â714. MR 99340, DOI 10.2307/2372779
- Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, Springer-Verlag, New York, 1988. Translated from the French. MR 918564, DOI 10.1007/978-1-4612-1035-1
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 155-173
- MSC: Primary 14L15; Secondary 14E20
- DOI: https://doi.org/10.1090/S0002-9947-1993-1150015-4
- MathSciNet review: 1150015