$K$-theory of Eilenberg-Mac Lane spaces and cell-like mapping problem
HTML articles powered by AMS MathViewer
- by A. N. Dranishnikov
- Trans. Amer. Math. Soc. 335 (1993), 91-103
- DOI: https://doi.org/10.1090/S0002-9947-1993-1153012-8
- PDF | Request permission
Abstract:
There exist cell-like dimension raising maps of $6$-dimensional manifolds. The existence of such maps is proved by using $K$-theory of Eilenberg-Mac Lane complexes.References
- P. S. Alexandroff, Dimension theorie, ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
- Steve Armentrout, Cellular decompositions of $3$-manifolds that yield $3$-manifolds, Memoirs of the American Mathematical Society, No. 107, American Mathematical Society, Providence, R.I., 1971. MR 0413104
- D. W. Anderson and Luke Hodgkin, The $K$-theory of Eilenberg-MacLane complexes, Topology 7 (1968), 317–329. MR 231369, DOI 10.1016/0040-9383(68)90009-8
- R. H. Bing, A decomposition of $E^3$ into points and tame arcs such that the decomposition space is topologically different from $E^3$, Ann. of Math. (2) 65 (1957), 484–500. MR 92961, DOI 10.2307/1970058 —, Decomposition of ${E^3}$ in topology of $3$-manifolds and related topics, M. K. Fort, ed., Prentice-Hall, 1962, pp. 5-21.
- Morton Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478–483. MR 115157, DOI 10.1090/S0002-9939-1960-0115157-4 V. M. Bukshtaber and A. S. Mischenko, $K$-theory for the category of infinite cellular complexes, Math. USSR-Izv. 2 (1969), 515-556.
- J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), no. 1, 83–112. MR 541330, DOI 10.2307/1971245
- Robert J. Daverman, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), no. 2, 277–298. MR 623564, DOI 10.2140/pjm.1981.93.277
- A. N. Dranishnikov, Homological dimension theory, Uspekhi Mat. Nauk 43 (1988), no. 4(262), 11–55, 255 (Russian); English transl., Russian Math. Surveys 43 (1988), no. 4, 11–63. MR 969565, DOI 10.1070/RM1988v043n04ABEH001900 —, On Alexandroff problem, Mat. Sb. 135:4 (1986), 59-111. (Russian) A. N. Dranishnikov and E. V. Schepin, Cell-like maps. The problem of increase of the dimension, Russian Math. Surveys 41:6 (1986), 59-111.
- A. N. Dranišnikov, D. Repovš, and E. V. Ščepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), no. 3, 237–253. MR 1098904, DOI 10.1016/0166-8641(91)90089-5 R. D. Edwards, Approximating certain cell-like maps by homeomorphisms, Notices Amer. Math. Soc. 24 (1977), A-649. —, A theorem and a question related to cohomological dimension and cell-like maps, Notices Amer. Math. Soc. 25 (1978), A-259.
- V. I. Kuz′minov, Homological dimension theory, Uspehi Mat. Nauk 23 (1968), no. 5 (143), 3–49 (Russian). MR 0240813
- George Kozlowski and John J. Walsh, Cell-like mappings on $3$-manifolds, Topology 22 (1983), no. 2, 147–151. MR 683754, DOI 10.1016/0040-9383(83)90025-3
- W. J. R. Mitchell and D. Repovš, The topology of cell-like mappings, Rend. Sem. Fac. Sci. Univ. Cagliari 58 (1988), no. suppl., 265–300. Conference on Differential Geometry and Topology (Sardinia, 1988). MR 1122860
- Frank Quinn, Ends of maps. III. Dimensions $4$ and $5$, J. Differential Geometry 17 (1982), no. 3, 503–521. MR 679069
- L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), 271–294. MR 295365, DOI 10.1016/0040-9383(72)90014-6
- Stanisław Spież, Imbeddings in $\textbf {R}^{2m}$ of $m$-dimensional compacta with $\textrm {dim}(X\times X)<2m$, Fund. Math. 134 (1990), no. 2, 105–115. MR 1074638
- Dennis Sullivan, Geometric topology. Part I, Massachusetts Institute of Technology, Cambridge, Mass., 1971. Localization, periodicity, and Galois symmetry; Revised version. MR 0494074
- John J. Walsh, Dimension, cohomological dimension, and cell-like mappings, Shape theory and geometric topology (Dubrovnik, 1981) Lecture Notes in Math., vol. 870, Springer, Berlin-New York, 1981, pp. 105–118. MR 643526
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 91-103
- MSC: Primary 55M10; Secondary 54F45, 57Q55
- DOI: https://doi.org/10.1090/S0002-9947-1993-1153012-8
- MathSciNet review: 1153012