$7$-dimensional nilpotent Lie algebras
HTML articles powered by AMS MathViewer
- by Craig Seeley
- Trans. Amer. Math. Soc. 335 (1993), 479-496
- DOI: https://doi.org/10.1090/S0002-9947-1993-1068933-4
- PDF | Request permission
Abstract:
All $7$-dimensional nilpotent Lie algebras over $\mathbb {C}$ are determined by elementary methods. A multiplication table is given for each isomorphism class. Distinguishing features are given, proving that the algebras are pairwise nonisomorphic. Moduli are given for the infinite families which are indexed by the value of a complex parameter.References
- José María Ancochéa-Bermúdez and Michel Goze, Sur la classification des algèbres de Lie nilpotentes de dimension $7$, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 17, 611–613 (French, with English summary). MR 845651
- V. I. Arnol′d, Critical points of smooth functions, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 19–39. MR 0431217 R. Beck and B. Kolman, Construction of nilpotent Lie algebras over arbitrary fields Proc. of 1981 ACM Sympos. on Symbolic and Algebraic Computation (Paul S. Wang, ed.), ACM, New York, 1981, pp. 169-174. —, Algorithms for central extensions of Lie algebras, Proc. 1981 ACM Sympos. on Symbolic and Algebraic Computation (Paul S. Wang, ed.), ACM, New York, 1981, pp. 175-178.
- Harald Bjar and Olav Arnfinn Laudal, Deformation of Lie algebras and Lie algebras of deformations, Compositio Math. 75 (1990), no. 1, 69–111. MR 1059956 R. Carles, Variétés d’algèbre de Lie: point de vue global et rigidité, Thesis, University of Poitiers, France, 1984.
- Chong-yun Chao, Uncountably many nonisomorphic nilpotent Lie algebras, Proc. Amer. Math. Soc. 13 (1962), 903–906. MR 148715, DOI 10.1090/S0002-9939-1962-0148715-3
- Michael A. Gauger, On the classification of metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973), 293–329. MR 325719, DOI 10.1090/S0002-9947-1973-0325719-0
- Fritz Grunewald and Joyce O’Halloran, Varieties of nilpotent Lie algebras of dimension less than six, J. Algebra 112 (1988), no. 2, 315–325. MR 926608, DOI 10.1016/0021-8693(88)90093-2
- Fritz Grunewald and Joyce O’Halloran, Nilpotent groups and unipotent algebraic groups, J. Pure Appl. Algebra 37 (1985), no. 3, 299–313. MR 797867, DOI 10.1016/0022-4049(85)90103-3
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793 O. Laudal and M. Pfister, The local moduli problem. Applications to isolated hypersurface singularities, Preprint series 11, University of Oslo, Norway, 1986.
- L. Magnin, Sur les algèbres de Lie nilpotentes de dimension $\leq 7$, J. Geom. Phys. 3 (1986), no. 1, 119–144 (French, with English summary). MR 855573, DOI 10.1016/0393-0440(86)90005-7
- A. Malcev, On solvable Lie algebras, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 9 (1945), 329–356 (Russian, with English summary). MR 0022217
- John N. Mather and Stephen S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent. Math. 69 (1982), no. 2, 243–251. MR 674404, DOI 10.1007/BF01399504
- V. V. Morozov, Classification of nilpotent Lie algebras of sixth order, Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 4 (5), 161–171 (Russian). MR 0130326
- Mustapha Romdhani, Classification of real and complex nilpotent Lie algebras of dimension $7$, Linear and Multilinear Algebra 24 (1989), no. 3, 167–189. MR 1007253, DOI 10.1080/03081088908817910 È. N. Safiullina, Classification of nilpotent Lie algebras of order $7$ (Thesis), Candidates Works, no. 64, Math. Mech. Phys., Izdat. Kazan Univ., Kazan, 1964, pp. 66-69. MR 32:5797 K. Saito, Einfache eliptische Singularitäten, Invent. Math. 23 (1974), 289-325.
- L. J. Santharoubane, Infinite families of nilpotent Lie algebras, J. Math. Soc. Japan 35 (1983), no. 3, 515–519. MR 702774, DOI 10.2969/jmsj/03530515
- Craig Seeley, Degenerations of central quotients, Arch. Math. (Basel) 56 (1991), no. 3, 236–241. MR 1091876, DOI 10.1007/BF01190210
- Craig Seeley, Degenerations of $6$-dimensional nilpotent Lie algebras over $\textbf {C}$, Comm. Algebra 18 (1990), no. 10, 3493–3505. MR 1063991, DOI 10.1080/00927879008824088
- Craig Seeley, Some nilpotent Lie algebras of even dimension, Bull. Austral. Math. Soc. 45 (1992), no. 1, 71–77. MR 1147246, DOI 10.1017/S0004972700037023 —, Seven-dimensional nilotent Lie algebras over the complex numbers, Thesis, University of Illinois at Chicago, 1988.
- Craig Seeley and Stephen S.-T. Yau, Variation of complex structures and variation of Lie algebras, Invent. Math. 99 (1990), no. 3, 545–565. MR 1032879, DOI 10.1007/BF01234430
- Tor Skjelbred and Terje Sund, Sur la classification des algèbres de Lie nilpotentes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A241–A242 (French, with English summary). MR 498734 K. A. Umlauf, Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null, Thesis, University of Leipzig, Germany, 1891.
- David Wilkinson, The groups of exponent $p$ and order $p^7$ ($p$ any prime), J. Algebra 118 (1988), no. 1, 109–119. MR 961329, DOI 10.1016/0021-8693(88)90051-8
- Stephen S.-T. Yau, Singularities defined by $\textrm {sl}(2,\textbf {C})$ invariant polynomials and solvability of Lie algebras arising from isolated singularities, Amer. J. Math. 108 (1986), no. 5, 1215–1239. MR 859777, DOI 10.2307/2374603
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 479-496
- MSC: Primary 17B30
- DOI: https://doi.org/10.1090/S0002-9947-1993-1068933-4
- MathSciNet review: 1068933