Fractal dimensions and singularities of the Weierstrass type functions
HTML articles powered by AMS MathViewer
- by Tian You Hu and Ka-Sing Lau
- Trans. Amer. Math. Soc. 335 (1993), 649-665
- DOI: https://doi.org/10.1090/S0002-9947-1993-1076614-6
- PDF | Request permission
Abstract:
A new type of fractal measures ${\mathcal {K}^s}$, $1 \leq s \leq 2$, defined on the subsets of the graph of a continuous function is introduced. The $\mathcal {K}$-dimension defined by this measure is ’closer’ to the Hausdorff dimension than the other fractal dimensions in recent literatures. For the Weierstrass type functions defined by $W(x) = \sum \nolimits _0^\infty {{\lambda ^{ - \alpha i}}g({\lambda ^i}x)}$, where $\lambda > 1$, $0 < \alpha < 1$, and $g$ is an almost periodic Lipschitz function of order greater than $\alpha$, it is shown that the $\mathcal {K}$-dimension of the graph of $W$ equals to $2 - \alpha$, this conclusion is also equivalent to certain rate of the local oscillation of the function. Some problems on the ’knot’ points and the nondifferentiability of $W$ are also discussed.References
- A. S. Besicovitch and H. D. Ursell, Sets of fractional dimensions (v): On dimensional numbers of some continuous curves, J. London Math. Soc. 12 (1937), 18-25.
- Harald Bohr, Almost Periodic Functions, Chelsea Publishing Co., New York, N.Y., 1947. MR 0020163
- Casper Goffman and John J. Loughlin, Strong and weak $\Phi$-variation of Brownian motion, Indiana Univ. Math. J. 22 (1972/73), 135–138. MR 296227, DOI 10.1512/iumj.1972.22.22012
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), no. 3, 301–325. MR 1501044, DOI 10.1090/S0002-9947-1916-1501044-1
- Masayoshi Hata, Singularities of the Weierstrass type functions, J. Analyse Math. 51 (1988), 62–90. MR 963150, DOI 10.1007/BF02791119
- Tian You Hu and Ka-Sing Lau, The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 1, 97–103. MR 1049763, DOI 10.1017/S0305004100068985 —, The sum of Rademacher functions and Hausdorff dimension. II (preprint).
- J.-P. Kahane and R. Salem, Sur la convolution d’une infinité de distributions de Bernoulli, Colloq. Math. 6 (1958), 193–202 (French). MR 101992, DOI 10.4064/cm-6-1-193-202
- James L. Kaplan, John Mallet-Paret, and James A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 261–281. MR 766105, DOI 10.1017/S0143385700002431
- R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
- F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), no. 2, 155–186. MR 1002918, DOI 10.4064/sm-93-2-155-186
- Fraydoun Rezakhanlou, The packing measure of the graphs and level sets of certain continuous functions, Math. Proc. Cambridge Philos. Soc. 104 (1988), no. 2, 347–360. MR 948919, DOI 10.1017/S0305004100065518
- S. James Taylor, The measure theory of random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 383–406. MR 857718, DOI 10.1017/S0305004100066160
- S. James Taylor and Claude Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), no. 2, 679–699. MR 776398, DOI 10.1090/S0002-9947-1985-0776398-8
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119 N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Mass. Inst. Tech. 3 (1924), 73-94.
Bibliographic Information
- © Copyright 1993 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 335 (1993), 649-665
- MSC: Primary 28A75; Secondary 28A12
- DOI: https://doi.org/10.1090/S0002-9947-1993-1076614-6
- MathSciNet review: 1076614